2.793

2018影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于序列轮廓线的凸面目标全自动重构方法

周朗明 张小虎 关棒磊

周朗明, 张小虎, 关棒磊. 基于序列轮廓线的凸面目标全自动重构方法. 自动化学报, 2015, 41(4): 725-734. doi: 10.16383/j.aas.2015.c140369
引用本文: 周朗明, 张小虎, 关棒磊. 基于序列轮廓线的凸面目标全自动重构方法. 自动化学报, 2015, 41(4): 725-734. doi: 10.16383/j.aas.2015.c140369
ZHOU Lang-Ming, ZHANG Xiao-Hu, GUAN Bang-Lei. An Automatic Reconstruction Method of Convex Object Based on Sequence Contours. ACTA AUTOMATICA SINICA, 2015, 41(4): 725-734. doi: 10.16383/j.aas.2015.c140369
Citation: ZHOU Lang-Ming, ZHANG Xiao-Hu, GUAN Bang-Lei. An Automatic Reconstruction Method of Convex Object Based on Sequence Contours. ACTA AUTOMATICA SINICA, 2015, 41(4): 725-734. doi: 10.16383/j.aas.2015.c140369

基于序列轮廓线的凸面目标全自动重构方法


DOI: 10.16383/j.aas.2015.c140369
详细信息
    作者简介:

    张小虎 国防科学技术大学航天科学与工程学院研究员.主要研究方向为摄像测量与计算机视觉.E-mail:zxh1302@hotmail.com

    通讯作者: 周朗明 国防科学技术大学航天科学与工程学院博士后.主要研究方向为数字摄影测量与计算机视觉.本文通信作者.E-mail:zlm_mj@126.com
  • 基金项目:

    国家自然科学基金(11272347),国家重大科学仪器设备开发专项(2013YQ140517)资助

An Automatic Reconstruction Method of Convex Object Based on Sequence Contours

More Information
  • Fund Project:

    Supported by National Natural Science Foundation of China(11272347), and National Key Scientific Instrument and Equipment Development Project(2013YQ140517)

  • 摘要: 凸面目标在成像时会表现尺寸较小、纹理稀疏或缺乏、透光、反光等特点.在对其进行三维重构时,传统的立体视觉匹配、主动视觉扫描(激光或结构光)等重构方法无法提供良好的解决方案.针对此类目标的重构难题,本文提出一种基于序列轮廓线的全自动重构方法.该方法首先采集目标的序列轮廓影像,然后提取高精度的轮廓线,再利用多个视角的轮廓线对初始外包体进行空间切割得到目标的初始三维模型,接着根据角度和面积约束对初始三维模型中的面进行合并,最后利用合并后的面重新对外包体进行精细切割得到目标的精确三维刻面模型.通过对凸面目标(注射器针头,直径约为3mm)的重构实验证明,利用本文的方法重构得到的模型角度误差小于0.7,执行时间小于15s,重构过程无需人工干预,能有效解决凸面目标的三维重构及视觉测量难题.
  • [1] Wang C, Yang W M, Liao Q M. A space carving based reconstruction method using discrete viewing. In:Proceedings of the 7th International Conference on Image and Graphics. Qingdao, China:IEEE, 2013. 607-611
    [2] Liu Guang-Shuai, Li Bai-Lin, He Chao-Ming. Convex optimization of continuous energy model in multiview 3D reconstruction. Computer Engineering and Applications, 2013, 49(1):19-22(刘光帅, 李柏林, 何朝明. 多视三维重构中连续能量模型的凸优化. 计算机工程与应用, 2013, 49(1):19-22)
    [3] [3] Yemez Y, Sahillioglu Y. Shape from silhouette using topology-adaptive mesh deformation. Pattern Recognition Letters, 2009, 30(13):1198-1207
    [4] [4] Dyer C R. Volumetric scene reconstruction from multiple views. Foundations of Image Understanding, 2001, 628:469-489
    [5] [5] Lorensen W E, Cline H E. Marching cubes:a high resolution 3d surface reconstruction algorithm. ACM Computer Graphics, 1987, 21(4):163-169
    [6] [6] Seitz S M, Dyer C R. Photorealistic scene reconstruction by voxel coloring. International Journal of Computer Vision, 1999, 35(2):151-173
    [7] [7] Kutulakos K N, Seitz S M. A theory of shape by space carving. International Journal of Computer Vision, 2000, 38(3):1999-2218
    [8] [8] Rankin J R, Boyapati M. Visual hull construction from semitransparent coloured silhouettes. International Journal of Computer Graphics Animation, 2013, 3(4):57-63
    [9] [9] Hernandez Esteban C, Schmitt F. Multi-stereo 3D object reconstruction. In:Proceedings of the 1st International Symposium on 3D Data Processing Visualization and Transmission. Padova, Italy:IEEE, 2002. 159-166
    [10] Mulayim A Y, Yilmaz U, Atalay V. Silhouette-based 3-D model reconstruction from multiple images. IEEE Transactions on Systems, Man, and Cybernetics, 2003, 33(4):582-591
    [11] Wu C L, Wilburn B, Matsushita Y, Theobalt C. High-quality shape from multi-view stereo and shading under general illumination. In:Proceedings of the 2011 Conference on Computer Vision and Pattern Recognition Workshops. Colorado, USA:IEEE, 2011. 969-976
    [12] Cremers D, Kolev K. Multiview stereo and silhouette consistency via convex functionals over convex domains. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(6):1161-1174
    [13] Ladikos A, Benhimane S, Navab N. Efficient visual hull computation for real-time 3D reconstruction using CUDA. In:Proceedings of the 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops. Anchorage, AK, USA:IEEE, 2008. 1-8
    [14] Chang B, Woo S, Ihm I. GPU-based parallel construction of compact visual hull meshes. The Visual Computer, 2014, 30(2):201-211
    [15] Huang C H, Lu D M, Diao C Y. Accelerated visual hulls of complex objects using contribution weights. In:Proceedings of the 7th International Conference on Image and Graphics. Qingdao, China:IEEE, 2013. 685-689
    [16] Hours J H, Schorsch S, Jones C N. Parametric polytope reconstruction an application to crystal shape estimation. IEEE Transactions on Image Process, 2013, 30(2):201-211
    [17] Franco J, Boyer E. Efficient polyhedral modeling from silhouettes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(3):414-427
    [18] Matsumoto Y, Terasaki H, Sugimoto K, Arakawa T. A portable three-dimensional digitizer. In:Proceedings of the 1997 International Conference on Recent Advances in 3-D Digital Imaging and Modeling. Ottawa, Ont., Canada:IEEE, 1997. 197-204
    [19] Niem W. Automatic reconstruction of 3D objects using a mobile camera. Image and Vision Computing, 1999, 17(2):125-134
    [20] Schmitt F, Yemez Y. 3D color object reconstruction from 2D image sequences. In:Proceedings of the 1999 International Conference on Image Processing. Kobe, Japan:IEEE, 1999. 65-69
    [21] Slabaugh G, Schafer R, Hans M. Image-based photo hulls. In:Proceedings of the 1st International Symposium on 3D Data Processing Visualization and Transmission. Padova, Italy:IEEE, 2002. 704-862
    [22] Montani C, Scateni R, Scopigno R. Discretized marching cubes. In:Proceedings of the 1994 IEEE Conference on Visualization'94. Washington, D.C., USA:IEEE, 1994. 281-287
    [23] Cheung K, Baker S, Kanade T. Shape-from-silhouette of articulated objects and its use for human body kinematics estimation and motion capture. Computer Vision and Pattern Recognition, 2003, 1:77-84
    [24] Zhang Jian-Qing, Su Guo-Zhong, Zheng Shun-Yi, Zhong Liang. High accurate outline detection algorithm based on line diffusion function model. Geomatics and Information Science of Wuhan University, 2006, 31(2):95-104(张剑清, 苏国中, 郑顺义, 钟良. 基于线扩散函数的高精度轮廓特征提取算法. 武汉大学学报(信息科学版), 2006, 31(2):95-104)
    [25] Li Cai-Lin, Guo Bao-Yun, Li Chang. The high-accurate extraction of line features of object contour. Acta Geodaetica et Cartographica Sinica, 2011, 40(1):66-70(李彩林, 郭宝云, 李畅. 目标轮廓直线特征的高精度提取. 测绘学报, 2011, 40(1):66-70)
    [26] Zheng S Y, Li C L, Su G Z, Zhang J Q. High-accurate line feature extraction algorithm based on line diffusion function model. In:Proceedings of the 2007 International Symposium on Multispectral Image Processing and Pattern Recognition. Wuhan, China:SPIE, 2007. 678-683
    [27] Xu Ying-Xin, Li Xing-Fei, Zhu Jia. Application of telecentric lens in rotary workpiece measurement system. Transducer and Microsystem Technologies, 2010, 29(1):111-113(徐颖欣, 李醒飞, 朱嘉. 远心镜头在回转体测量系统中的应用. 传感器与微系统, 2010, 29(1):111-113)
    [28] Fremont V, Chellali R. Turntable-based 3D object reconstruction. In:Proceedings of the 2004 IEEE Conference on Cybernetics and Intelligent Systems. Singapore:IEEE, 2004. 1277-1282
    [29] Beardsley P A, Torr P H S, Zisserman A. 3D model acquisition from extended image sequences. In:Proceedings of the 4th European Conference on Computer Vision-ECCV'96. Berlin Heidelberg:Springer-Verlag, 1996. 683-695
    [30] Fitzgibbon A W, Cross G, Zisserman A. Automatic 3D model construction for turn-table sequences. In:Proceedings of the 1998 the European Workshop on 3D Structure from Multiple Images of Large-Scale Environments. Berlin Heidelberg:Springer-Verlag, 1998. 155-170
    [31] Eisert P, Steinbach E, Girod B. Automatic reconstruction of stationary 3-D objects from multiple uncalibrated camera views. IEEE Transactions on Circuits and Systems for Video Technology, 2000, 10(2):261-277
    [32] Gardner R J, Paolo G, Thorsten T. Determining a rotation of a tetrahedron from a projection. Discrete Computational Geometry, 2012, 48(3):749-765
    [33] Presles B, Debayle J, Pinoli J C. Size and shape estimation of 3-D convex objects from their 2-D projections:application to crystallization processes. Journal of Microscopy, 2012, 248(2):140-155
    [34] Lin T H, Chang H T, Hu S J. 3D reconstruction of intricate objects using planar cast shadows. In:Proceedings of the 2013 ACM SIGGRAPH 2013 Posters. New York, NY, USA:ACM, 2013. 78-88
    [35] Servin M, Garnica G, Estrada J C, Padilla J M. High-resolution low-noise 360-degree digital solid reconstruction using phase-stepping profilometry. Optics Express, 2014, 22(9):10914-10922
    [36] Xiong Bang-Shu, Yu Liang, Ou Qiao-Feng, Du Jing. An image-based quality detection method of syringe needles. Chinese Journal of Biomedical Engineering, 2010, 29(4):627-631(熊邦书, 余亮, 欧巧凤, 杜静. 注射器针头合格性图像检测方法. 中国生物医学工程学报, 2010, 29(4):627-631)
  • [1] 李迎, 张大朋, 刘希龙, 徐德. 基于单目显微视觉的微球姿态测量方法[J]. 自动化学报, 2019, 45(7): 1281-1289. doi: 10.16383/j.aas.2018.c180009
    [2] 张慧, 王坤峰, 王飞跃. 深度学习在目标视觉检测中的应用进展与展望[J]. 自动化学报, 2017, 43(8): 1289-1305. doi: 10.16383/j.aas.2017.c160822
    [3] 尹宏鹏, 陈波, 柴毅, 刘兆栋. 基于视觉的目标检测与跟踪综述[J]. 自动化学报, 2016, 42(10): 1466-1489. doi: 10.16383/j.aas.2016.c150823
    [4] 庄严, 陈东, 王伟, 韩建达, 王越超. 移动机器人基于视觉室外自然场景理解的研究与进展[J]. 自动化学报, 2010, 36(1): 1-11. doi: 10.3724/SP.J.1004.2010.00001
    [5] 杜友田, 陈峰, 徐文立. 基于多层动态贝叶斯网络的人的行为多尺度分析及识别方法[J]. 自动化学报, 2009, 35(3): 225-232. doi: 10.3724/SP.J.1004.2009.00225
    [6] 刘丁, 吴雄君, 杨延西, 辛菁. 基于改进变尺度混沌优化的自标定位置视觉伺服[J]. 自动化学报, 2008, 34(6): 623-631. doi: 10.3724/SP.J.1004.2008.00623
    [7] 胡钊政, 谈正. 一种基于主动视觉的三维结构恢复和直接欧氏重建算法[J]. 自动化学报, 2007, 33(5): 494-499. doi: 10.1360/aas-007-0494
    [8] 曾慧, 邓小明, 赵训坡, 胡占义. 基于线对应的单应矩阵估计及其在视觉测量中的应用[J]. 自动化学报, 2007, 33(5): 449-455. doi: 10.1360/aas-007-0449
    [9] 张天序, 翁文杰, 冯军. 三维运动目标的多尺度智能递推识别新方法[J]. 自动化学报, 2006, 32(5): 641-658.
    [10] 侯志强, 韩崇昭. 视觉跟踪技术综述[J]. 自动化学报, 2006, 32(4): 603-617.
    [11] 胡斌, 何克忠. 计算机视觉在室外移动机器人中的应用[J]. 自动化学报, 2006, 32(5): 774-784.
    [12] 邱茂林, 马颂德, 李毅. 计算机视觉中摄像机定标综述[J]. 自动化学报, 2000, 26(1): 43-55.
    [13] 黄浴, 袁保宗. 基于长序列立体图象的运动参数LS估计[J]. 自动化学报, 1997, 23(1): 125-128.
    [14] 万享, 徐光佑. 主动视觉系统中的摄像机姿态校准[J]. 自动化学报, 1995, 21(1): 48-56.
    [15] 徐守义, 齐容刚, 于东刚, 刘军, 王承训. 计算机视觉控制系统在显象管灯丝二次绕线机中的应用[J]. 自动化学报, 1993, 19(4): 483-486.
    [16] 吴成柯, 邓世伟, 陆心如. 计算机视觉中三维位置信息的误差估计[J]. 自动化学报, 1993, 19(2): 239-244.
    [17] 徐文立, 刘文煌. 由特征点的空间位置估计运动参数[J]. 自动化学报, 1992, 18(4): 440-447.
    [18] 徐光祐, 郭进. 视觉导引可移动机器人中的空间不确定性的表示和推理[J]. 自动化学报, 1992, 18(1): 39-46.
    [19] 徐文立. 计算机视觉的PNP问题的最优解[J]. 自动化学报, 1992, 18(5): 522-531.
    [20] 张鸿宾. 基于轮廓线匹配的二维重迭物体的识别[J]. 自动化学报, 1991, 17(4): 439-446.
  • 加载中
计量
  • 文章访问数:  1275
  • HTML全文浏览量:  72
  • PDF下载量:  1293
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-06-03
  • 修回日期:  2014-11-15
  • 刊出日期:  2015-04-20

基于序列轮廓线的凸面目标全自动重构方法

doi: 10.16383/j.aas.2015.c140369
    基金项目:

    国家自然科学基金(11272347),国家重大科学仪器设备开发专项(2013YQ140517)资助

    作者简介:

    张小虎 国防科学技术大学航天科学与工程学院研究员.主要研究方向为摄像测量与计算机视觉.E-mail:zxh1302@hotmail.com

    通讯作者: 周朗明 国防科学技术大学航天科学与工程学院博士后.主要研究方向为数字摄影测量与计算机视觉.本文通信作者.E-mail:zlm_mj@126.com

摘要: 凸面目标在成像时会表现尺寸较小、纹理稀疏或缺乏、透光、反光等特点.在对其进行三维重构时,传统的立体视觉匹配、主动视觉扫描(激光或结构光)等重构方法无法提供良好的解决方案.针对此类目标的重构难题,本文提出一种基于序列轮廓线的全自动重构方法.该方法首先采集目标的序列轮廓影像,然后提取高精度的轮廓线,再利用多个视角的轮廓线对初始外包体进行空间切割得到目标的初始三维模型,接着根据角度和面积约束对初始三维模型中的面进行合并,最后利用合并后的面重新对外包体进行精细切割得到目标的精确三维刻面模型.通过对凸面目标(注射器针头,直径约为3mm)的重构实验证明,利用本文的方法重构得到的模型角度误差小于0.7,执行时间小于15s,重构过程无需人工干预,能有效解决凸面目标的三维重构及视觉测量难题.

English Abstract

周朗明, 张小虎, 关棒磊. 基于序列轮廓线的凸面目标全自动重构方法. 自动化学报, 2015, 41(4): 725-734. doi: 10.16383/j.aas.2015.c140369
引用本文: 周朗明, 张小虎, 关棒磊. 基于序列轮廓线的凸面目标全自动重构方法. 自动化学报, 2015, 41(4): 725-734. doi: 10.16383/j.aas.2015.c140369
ZHOU Lang-Ming, ZHANG Xiao-Hu, GUAN Bang-Lei. An Automatic Reconstruction Method of Convex Object Based on Sequence Contours. ACTA AUTOMATICA SINICA, 2015, 41(4): 725-734. doi: 10.16383/j.aas.2015.c140369
Citation: ZHOU Lang-Ming, ZHANG Xiao-Hu, GUAN Bang-Lei. An Automatic Reconstruction Method of Convex Object Based on Sequence Contours. ACTA AUTOMATICA SINICA, 2015, 41(4): 725-734. doi: 10.16383/j.aas.2015.c140369
参考文献 (36)

目录

    /

    返回文章
    返回