2.793

2018影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于条件随机场和图像分割的显著性检测

钱生 陈宗海 林名强 张陈斌

钱生, 陈宗海, 林名强, 张陈斌. 基于条件随机场和图像分割的显著性检测. 自动化学报, 2015, 41(4): 711-724. doi: 10.16383/j.aas.2015.c140328
引用本文: 钱生, 陈宗海, 林名强, 张陈斌. 基于条件随机场和图像分割的显著性检测. 自动化学报, 2015, 41(4): 711-724. doi: 10.16383/j.aas.2015.c140328
QIAN Sheng, CHEN Zong-Hai, LIN Ming-Qiang, ZHANG Chen-Bin. Saliency Detection Based on Conditional Random Field and Image Segmentation. ACTA AUTOMATICA SINICA, 2015, 41(4): 711-724. doi: 10.16383/j.aas.2015.c140328
Citation: QIAN Sheng, CHEN Zong-Hai, LIN Ming-Qiang, ZHANG Chen-Bin. Saliency Detection Based on Conditional Random Field and Image Segmentation. ACTA AUTOMATICA SINICA, 2015, 41(4): 711-724. doi: 10.16383/j.aas.2015.c140328

基于条件随机场和图像分割的显著性检测


DOI: 10.16383/j.aas.2015.c140328
详细信息
    作者简介:

    钱生 2014年获中国科学技术大学自动化系硕士学位.主要研究方向为计算机视觉,模式识别和生物认知.E-mail:qsheng@mail.ustc.edu.cn

    通讯作者: 陈宗海 中国科学技术大学自动化系教授.1991年获中国科学技术大学自动化系硕士学位.主要研究方向为复杂系统的建模,仿真与控制,智能机器人和量子信息控制.本文通信作者.E-mail:chenzh@ustc.edu.cn
  • 基金项目:

    国家自然科学基金(61375079)资助

Saliency Detection Based on Conditional Random Field and Image Segmentation

More Information
  • Fund Project:

    Supported by National Natural Science Foundation of China(61375079)

  • 摘要: 针对当前常见的显著性方法检测得到的显著性区域边界稀疏不明确、内部不均匀致密等问题,提出了一种基于条件随机场(Condition random field, CRF)和图像分割的显著性检测方法.该方法综合利用边界信息、局部信息以及全局信息,从图像中提取出多种显著性特征;在条件随机场框架下融合这些特征,通过显著性区域与背景区域的区域标注实现显著性区域的粗糙检测;结合区域标注结果和交互式图像分割方法实现显著性区域的精确检测.实验结果表明本文提出的方法能够清晰而准确地提取出图像中的显著性区域,有效提高显著性检测精度.
  • [1] Loupias E, Sebe N, Bres S, Jolion J M. Wavelet-based salient points for image retrieval. In:Proceedings of the 2000 IEEE International Conference on Image Processing. Vancouver, British Columbia, Canada:IEEE, 2000, 2:518-521
    [2] [2] Jian M W, Dong J Y, Ma J. Image retrieval using wavelet-based salient regions. The Imaging Science Journal, 2011, 59(4):219-231
    [3] [3] Guo C L, Zhang L M. A novel multi-resolution spatiotemporal saliency detection model and its applications in image and video compression. IEEE Transactions on Image Processing, 2010, 19(1):185-198
    [4] [4] Kim W, Kim C. A novel image importance model for content-aware image resizing. In:Proceedings of the 18th IEEE International Conference on Image Processing. Brussels, Belguim:IEEE, 2011. 2469-2472
    [5] [5] Gupta R, Chaudhury S. A scheme for attentional video compression. In:Proceedings of the 4th International Conference on Pattern Recognition and Machine Intelligence. Berlin, Heidelberg:Springer-Verlag, 2011. 458-465
    [6] [6] Itti L. Automatic foveation for video compression using a neurobiological model of visual attention. IEEE Transactions on Image Processing, 2004, 13(10):1304-1318
    [7] [7] Kanan C, Cottrell G. Robust classification of objects, faces, and flowers using natural image statistics. In:Proceedings of the 2010 IEEE Conference on Computer Vision and Pattern Recognition. San Francisco, California, USA:IEEE, 2010. 2472-2479
    [8] [8] Teuber H L. Physiological psychology. Annual Review of Psychology, 1955, 6:267-296
    [9] [9] Wolfe J M, Horowitz T S. What attributes guide the deployment of visual attention and how do they do it? Nature Reviews Neuroscience, 2004, 5(6):495-501
    [10] Desimone R, Duncan J. Neural mechanisms of visual selective attention. Annual Review of Neuroscience, 1995, 18(1):193-222
    [11] Mannan S K, Kennard C, Husain M. The role of visual salience in directing eye movements in visual object agnosia. Current Biology, 2009, 19(6):247-248
    [12] Treisman A M, Gelade G. A feature-integration theory of attention. Cognitive Psychology, 1980, 12(1):97-136
    [13] Koch C, Ullman S. Shifts in selective visual attention:towards the underlying neural circuitry. Human Neurobiology, 1985, 4(4):219-227
    [14] Itti L, Koch C, Niebur E. A model of saliency-based visualattention for rapid scene analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(11):1254-1259
    [15] Harel J, Koch C, Perona P. Graph-based visual saliency. In:Proceedings of the 2006 Advances in Neural Information Processing Systems. Vancouver, British Columbia, Canada:Bradford Book, 2006. 545-552
    [16] Hansen L K, Karadogan S, Marchegiani L. What to measure next to improve decision making? On top-down task driven feature saliency. In:Proceedings of the 2011 IEEE Symposium on Computational Intelligence, Cognitive Algorithms, Mind, and Brain. Paris, France:IEEE, 2011. 1-7
    [17] Baluch F, Itti L. Mechanisms of top-down attention. Trends in Neurosciences, 2011, 34(4):210-224
    [18] Itti L, Koch C. Computational modelling of visual attention. Nature Reviews Neuroscience, 2001, 2(3):194-203
    [19] Judd T, Ehinger K, Durand F, Torralba A. Learning to predict where humans look. In:Proceedings of the 12th IEEE International Conference on Computer Vision. Kyoto, Japan:IEEE, 2009. 2106-2113
    [20] Liu T, Yuan Z, Sun J, Wang J D, Zheng N N, Tang X O, Shun H Y. Learning to detect a salient object. IEEE Transactions on Software Engineering, 2011, 33(2):353-367
    [21] Borji A, Itti L. Exploiting local and global patch rarities for saliency detection. In:Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition. Providence, Rhode Island, USA:IEEE, 2012. 478-485
    [22] Jiang H Z, Wang J D, Yuan Z J, Wu Y, Zheng N N, Li S P. Salient object detection:a discriminative regional feature integration approach. In:Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition. Portland, Oregon, USA:IEEE, 2013. 2083-2090
    [23] Shen X, Wu Y. A unified approach to salient object detection via low rank matrix recovery. In:Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition. Providence, Rhode Island, USA:IEEE, 2012. 853-860
    [24] Yan Q, Xu L, Shi J P, Jia J Y. Hierarchical saliency detection. In:Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition. Portland, Oregon, USA:IEEE, 2013. 1155-1162
    [25] Yang C, Zhang L H, Lu H C, Ruan X, Yang M H. Saliency detection via Graph-Based manifold Ranking. In:Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition. Portland, Oregon, USA:IEEE, 2013. 3166-3173
    [26] Li X H, Lu H C, Zhang L H, Ruan X, Yang M H. Saliency detection via dense and sparse reconstruction. In:Proceedings of the 2013 IEEE International Conference on Computer Vision. Sydney, Australia:IEEE, 2013. 2976-2983
    [27] Hu Y Q, Rajan D, Chia L T. Robust subspace analysis for detecting visual attention regions in images. In:Proceedings of the 13th Annual ACM International Conference on Multimedia. Santa Fe, New Mexico, USA:ACM, 2005. 716-724
    [28] Hou X D, Zhang L. Saliency detection:a spectral residual approach. In:Proceedings of the 2007 IEEE Conference on Computer Vision and Pattern Recognition. Minneapolis, Minnesota State, USA:IEEE, 2007. 1-8
    [29] Guo C L, Ma Q, Zhang L M. Spatio-temporal saliency detection using phase spectrum of quaternion fourier transform. In:Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition. Anchorage, Alaska, USA:IEEE, 2008. 1-8
    [30] Zhang Qiao-Rong, Gu Guo-Chang, Liu Hai-Bo, Xiao Hui-Min. Salient region detection using multi-scale analysis in the frequency domain. Journal of Harbin Engineering University, 2010, 31(3):361-365(张巧荣, 顾国昌, 刘海波, 肖会敏. 利用多尺度频域分析的图像显著区域检测. 哈尔滨工程大学学报, 2010, 31(3):361-365)
    [31] Lafferty J D, McCallum A, Pereira F C N. Conditional random fields:probabilistic models for segmenting and labeling sequence data. In:Proceedings of the 8th IEEE International Conference on Machine Learning. Williamstown, MA, USA:IEEE, 2001. 282-289
    [32] Rother C, Kolmogorov V, Blake A. Grabcut:interactive foreground extraction using iterated graph cuts. ACM Transactions on Graphics, 2004, 23(3):309-314
    [33] Kumar S, Hebert M. Discriminative random fields:a discriminative framework for contextual interaction in classification. In:Proceedings of the 9th IEEE International Conference on Computer Vision. Nice, France:IEEE, 2003, 2:1150-1157
    [34] Cheng M M, Zhang G X, Mitra N J, Huang X L, Hu S M. Global contrast based salient region detection. In:Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern Recognition. Colorado Springs, Colorado, USA:2011 IEEE, 2011. 409-416
    [35] Sun J, Lu H C, Li S F. Saliency detection based on integration of boundary and soft-segmentation. In:Proceedings of the 19th IEEE International Conference on Image Processing. Orlando, Florida, USA:IEEE, 2012. 1085-1088
    [36] Wei Y C, Wen F, Zhu W J, Sun J. Geodesic saliency using background priors. In:Proceedings of the 12th European conference on Computer Vision-Volume Part Ⅲ. Berlin, Heidelberg:Springer-Verlag, 2012. 29-42
    [37] Borji A, Sihite D N, Itti L. Salient object detection:A benchmark. In:Proceedings of the 12th European conference on Computer Vision-Volume Part Ⅱ. Berlin, Heidelberg:Springer-Verlag, 2012. 414-429
    [38] Achanta R, Shaji A, Smith K, Lucchi A, Fua P, Ssstrunk S. SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(11):2274-2282
    [39] Achanta R, Hemami S, Estrada F, Susstrunk S. Frequency-tuned salient region detection. In:Proceedings of the 2009 IEEE International Conference on Computer Vision and Pattern Recognition. Miami Beach, Florida, USA:IEEE, 2009. 1597-1604
    [40] Achanta R, Susstrunk S. Saliency detection using maximum symmetric surround. In:Proceedings of the 2010 IEEE International Conference on Image Processing. Hong Kong, China:IEEE, 2010. 2653-2656
    [41] Jain, Anil K. Fundamentals of Digital Image Processing. Englewood Cliffs, New Jersey, USA:Prentice Hall, 1989. 51
    [42] Thomas S W. Efficient inverse color map computation. Graphics Gems Ⅱ. Boston:Academic Press, 1991:116-125
    [43] Otsu N. A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics, 1979, 9(1):62-66
    [44] Goferman S, Zelnik-Manor L, Tal A. Context-aware saliency detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(10):1915-1926
    [45] Jiang H Z, Wang J D, Yuan Z J, Liu T, Zheng N N. Automatic salient object segmentation based on context and shape prior. In:Proceedings of the 2011 British Machine Vision Conference. Dundee, Scotland, UK:BMVA Press, 2011. 1-12
    [46] Rahtu E, Kannala J, Salo M, Heikkil J. Segmenting salient objects from images and videos. In:Proceedings of the 11th European conference on Computer Vision-Part V. Berlin, Heidelberg:Springer-Verlag, 2010. 366-379
  • [1] 王松涛, 周真, 靳薇, 曲寒冰. 基于贝叶斯框架融合的RGB-D图像显著性检测[J]. 自动化学报, 2020, 46(4): 695-720. doi: 10.16383/j.aas.2018.c170232
    [2] 吴培良, 隰晓珺, 杨霄, 孔令富, 侯增广. 一种基于联合学习的家庭日常工具功用性部件检测算法[J]. 自动化学报, 2019, 45(5): 985-992. doi: 10.16383/j.aas.c170423
    [3] 张芳, 王萌, 肖志涛, 吴骏, 耿磊, 童军, 王雯. 基于全卷积神经网络与低秩稀疏分解的显著性检测[J]. 自动化学报, 2019, 45(11): 2148-2158. doi: 10.16383/j.aas.2018.c170535
    [4] 李东民, 李静, 梁大川, 王超. 基于多尺度先验深度特征的多目标显著性检测方法[J]. 自动化学报, 2019, 45(11): 2058-2070. doi: 10.16383/j.aas.c170154
    [5] 林华锋, 李静, 刘国栋, 梁大川, 李东民. 基于自适应背景模板与空间先验的显著性物体检测方法[J]. 自动化学报, 2017, 43(10): 1736-1748. doi: 10.16383/j.aas.2017.c160431
    [6] 李新德, 潘锦东, DEZERT Jean. 一种基于DSmT和HMM的序列飞机目标识别算法[J]. 自动化学报, 2014, 40(12): 2862-2876. doi: 10.3724/SP.J.1004.2014.02862
    [7] 周全, 王磊, 周亮, 郑宝玉. 基于多尺度上下文的图像标注算法[J]. 自动化学报, 2014, 40(12): 2944-2949. doi: 10.3724/SP.J.1004.2014.02944
    [8] 宋艳涛, 纪则轩, 孙权森. 基于图像片马尔科夫随机场的脑MR图像分割算法[J]. 自动化学报, 2014, 40(8): 1754-1763. doi: 10.3724/SP.J.1004.2014.01754
    [9] 李艳凤, 陈后金, 杨娜, 张胜君. 基于解剖学特征的乳腺X线图像胸肌分割[J]. 自动化学报, 2013, 39(8): 1265-1272. doi: 10.3724/SP.J.1004.2013.01265
    [10] 郭迎春, 袁浩杰, 吴鹏. 基于Local特征和Regional特征的图像显著性检测[J]. 自动化学报, 2013, 39(8): 1214-1224. doi: 10.3724/SP.J.1004.2013.01214
    [11] 杨扬, 李善平. 分割位置提示的可变形部件模型快速目标检测[J]. 自动化学报, 2012, 38(4): 540-548. doi: 10.3724/SP.J.1004.2012.00540
    [12] 顾鑫, 王海涛, 汪凌峰, 王颖, 陈如冰, 潘春洪. 基于不确定性度量的多特征融合跟踪[J]. 自动化学报, 2011, 37(5): 550-559. doi: 10.3724/SP.J.1004.2011.00550
    [13] 王坤峰, 李镇江, 汤淑明. 基于多特征融合的视频交通数据采集方法[J]. 自动化学报, 2011, 37(3): 322-330. doi: 10.3724/SP.J.1004.2011.00322
    [14] 魏巍, 申铉京, 千庆姬. 工业检测图像灰度波动变换自适应阈值分割算法[J]. 自动化学报, 2011, 37(8): 944-953. doi: 10.3724/SP.J.1004.2011.00944
    [15] 康文雄, 邓飞其. 基于方向场分布率的静脉图像分割方法[J]. 自动化学报, 2009, 35(12): 1496-1502. doi: 10.3724/SP.J.1004.2009.01496
    [16] 王永忠, 梁彦, 赵春晖, 潘泉. 基于多特征自适应融合的核跟踪方法[J]. 自动化学报, 2008, 34(4): 393-399. doi: 10.3724/SP.J.1004.2008.00393
    [17] 陈果, 左洪福. 图像的自适应模糊阈值分割法[J]. 自动化学报, 2003, 29(5): 791-796.
    [18] 桑农, 张天序. 基于Hopfield神经网络的FLIR图像分割[J]. 自动化学报, 2001, 27(3): 303-309.
    [19] 卢朝阳, 周辛妮, 顾英. 用图像识别的方法检测集成电路的键合点[J]. 自动化学报, 1999, 25(4): 567-570.
    [20] 吴成柯, 刘靖, 侯格贤. 图像分割的多参量遗传算法[J]. 自动化学报, 1998, 24(3): 410-413.
  • 加载中
计量
  • 文章访问数:  2095
  • HTML全文浏览量:  115
  • PDF下载量:  2540
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-05-09
  • 修回日期:  2014-10-27
  • 刊出日期:  2015-04-20

基于条件随机场和图像分割的显著性检测

doi: 10.16383/j.aas.2015.c140328
    基金项目:

    国家自然科学基金(61375079)资助

    作者简介:

    钱生 2014年获中国科学技术大学自动化系硕士学位.主要研究方向为计算机视觉,模式识别和生物认知.E-mail:qsheng@mail.ustc.edu.cn

    通讯作者: 陈宗海 中国科学技术大学自动化系教授.1991年获中国科学技术大学自动化系硕士学位.主要研究方向为复杂系统的建模,仿真与控制,智能机器人和量子信息控制.本文通信作者.E-mail:chenzh@ustc.edu.cn

摘要: 针对当前常见的显著性方法检测得到的显著性区域边界稀疏不明确、内部不均匀致密等问题,提出了一种基于条件随机场(Condition random field, CRF)和图像分割的显著性检测方法.该方法综合利用边界信息、局部信息以及全局信息,从图像中提取出多种显著性特征;在条件随机场框架下融合这些特征,通过显著性区域与背景区域的区域标注实现显著性区域的粗糙检测;结合区域标注结果和交互式图像分割方法实现显著性区域的精确检测.实验结果表明本文提出的方法能够清晰而准确地提取出图像中的显著性区域,有效提高显著性检测精度.

English Abstract

钱生, 陈宗海, 林名强, 张陈斌. 基于条件随机场和图像分割的显著性检测. 自动化学报, 2015, 41(4): 711-724. doi: 10.16383/j.aas.2015.c140328
引用本文: 钱生, 陈宗海, 林名强, 张陈斌. 基于条件随机场和图像分割的显著性检测. 自动化学报, 2015, 41(4): 711-724. doi: 10.16383/j.aas.2015.c140328
QIAN Sheng, CHEN Zong-Hai, LIN Ming-Qiang, ZHANG Chen-Bin. Saliency Detection Based on Conditional Random Field and Image Segmentation. ACTA AUTOMATICA SINICA, 2015, 41(4): 711-724. doi: 10.16383/j.aas.2015.c140328
Citation: QIAN Sheng, CHEN Zong-Hai, LIN Ming-Qiang, ZHANG Chen-Bin. Saliency Detection Based on Conditional Random Field and Image Segmentation. ACTA AUTOMATICA SINICA, 2015, 41(4): 711-724. doi: 10.16383/j.aas.2015.c140328
参考文献 (46)

目录

    /

    返回文章
    返回