2.793

2018影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

利用层次先验估计的显著性目标检测

徐威 唐振民

徐威, 唐振民. 利用层次先验估计的显著性目标检测. 自动化学报, 2015, 41(4): 799-812. doi: 10.16383/j.aas.2015.c140281
引用本文: 徐威, 唐振民. 利用层次先验估计的显著性目标检测. 自动化学报, 2015, 41(4): 799-812. doi: 10.16383/j.aas.2015.c140281
XU Wei, TANG Zhen-Min. Exploiting Hierarchical Prior Estimation for Salient Object Detection. ACTA AUTOMATICA SINICA, 2015, 41(4): 799-812. doi: 10.16383/j.aas.2015.c140281
Citation: XU Wei, TANG Zhen-Min. Exploiting Hierarchical Prior Estimation for Salient Object Detection. ACTA AUTOMATICA SINICA, 2015, 41(4): 799-812. doi: 10.16383/j.aas.2015.c140281

利用层次先验估计的显著性目标检测


DOI: 10.16383/j.aas.2015.c140281
详细信息
    作者简介:

    徐威 南京理工大学计算机科学与工程学院博士研究生.2009年获得南京理工大学计算机科学与技术学院学士学位.主要研究方向为图像处理,计算机视觉.E-mail:xuwei904@163.com

    通讯作者: 唐振民 南京理工大学计算机科学与工程学院教授.2002年获得南京理工大学计算机系模式识别与智能系统方向博士学位.主要研究方向为智能机器人,模式识别,图像处理与智能信息系统.本文通信作者.E-mail:tzm.cs@njust.edu.cn
  • 基金项目:

    国家自然科学基金(61473154)资助

Exploiting Hierarchical Prior Estimation for Salient Object Detection

More Information
  • Fund Project:

    Supported by National Natural Science Foundation of China(61473154)

  • 摘要: 有效的显著性目标检测在计算机视觉领域一直是具有挑战性的问题.本文首先对图像进行树滤波处理,采用Quick shift方法将其分解为超像素,再通过仿射传播聚类把超像素聚集为代表性的类.与以往方法不同,本文提出根据各类中拥有的超像素的类内和类间的空间离散程度及其位于图像边界的数目,自适应地估计先验背景,并提取条状背景区域;由目标性度量(Objectness measure)粗略地描述前景范围后,通过与各类之间的空间交互信息,估计先验前景;再经过连通区域优化前景与背景信息.最后,综合考虑各超像素与先验背景和前景在CIELab颜色空间的距离,并进行显著性中心加权,得到显著图.在MSRA-1000和复杂的SOD数据库上的实验结果表明,本文算法能准确、完整地检测出显著性目标,优于21种State-of-the-art算法,包括基于部分类似原理的方法.
  • [1] Borji A, Itti L. State-of-the-art in visual attention modeling. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(1):185-207
    [2] [2] Borji A, Sihite D, Itti L. Quantitative analysis of human-model agreement in visual saliency modeling:a comparative study. IEEE Transactions on Image Processing, 2013, 22(1):55-69
    [3] [3] Koch C, Ullman S. Shifts in selective visual attention:towards the underlying neural circuitry. Human Neurobiology, 1985, 4(4):219-227
    [4] [4] Itti L, Koch C, Niebur E. A model of saliency-based visual attention for rapid scene analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(11):1254-1259
    [5] [5] Ma Y F, Zhang H J. Contrast-based image attention analysis by using fuzzy growing. In:Proceedings of the 11th ACM International Conference on Multimedia. Berkeley, USA:ACM, 2003. 374-381
    [6] [6] Achanta R, Estrada F, Wils P, Ssstrunk S. Salient region detection and segmentation. In:Proceedings of the 6th International Conference on Computer Vision Systems. Santorini, Greece:Springer, 2008. 66-75
    [7] [7] Rahtu E, Kannala J, Salo M, Heikkil J. Segmenting salient objects from images and videos. In:Proceedings of the 11th European Conference on Computer Vision. Heraklion, Greece:Springer, 2010. 366-379
    [8] [8] Hou X D, Zhang L Q. Saliency detection:a spectral residual approach. In:Proceedings of the 2007 IEEE International Conference on Computer Vision and Pattern Recognition. Minneapoils, USA:IEEE, 2007. 1-8
    [9] [9] Achanta R, Hemami S, Estrada F, Ssstrunk S. Frequency-tuned salient region detection. In:Proceedings of the 2009 IEEE International Conference on Computer Vision and Pattern Recognition. Miami, USA:IEEE, 2009. 1597-1604
    [10] Cheng M M, Zhang G X, Mitra N J, Huang X, Hu S M. Global contrast based salient region detection. In:Proceedings of the 2011 IEEE International Conference on Computer Vision and Pattern Recognition. Providence, USA:IEEE, 2011. 409-416
    [11] Cheng M M, Jonathan W, Lin W Y, Zheng S, Vineet V, Crook N. Efficient salient region detection with soft image abstraction. In:Proceedings of the 2013 IEEE International Conference on Computer Vision. Sydney, Australia:IEEE, 2013. 1529-1536
    [12] Shen X, Wu Y. A unified approach to salient object detection via low rank matrix recovery. In:Proceedings of the 2012 IEEE International Conference on Computer Vision and Pattern Recognition. Providence, USA:IEEE, 2012. 853-860
    [13] Perazzi F, Krhenbhl P, Pritch Y, Hornung A. Saliency filters:contrast based filtering for salient region detection. In:Proceedings of the 2012 IEEE International Conference on Computer Vision and Pattern Recognition. Providence, USA:IEEE, 2012. 733-740
    [14] Achanta R, Shaji A, Smith K. SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(11):2274-2282
    [15] Margolin R, Tal A, Zelnik-Manor L. What makes a patch distinct? In:Proceedings of the 2013 IEEE International Conference on Computer Vision and Pattern Recognition. Sydney, Australia:IEEE, 2013. 1139-1146
    [16] Wei Y C, Wen F, Zhu W J, Sun J. Geodesic saliency using background priors. In:Proceedings of the 2012 European Conference on Computer Vision. Florence, Italy:Springer, 2012. 29-42
    [17] Goferman S, Zelnik-Manor L, Tal A. Content-aware saliency detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(10):1915-1926
    [18] Borji A, Sihite D N, Itti L. Salient object detection:a benchmark. In:Proceedings of the 2012 European Conference on Computer Vision. Florence, Italy:Springer, 2012. 414-429
    [19] Xie Y L, Lu H C, Yang M H. Bayesian saliency via low and mid level cues. IEEE Transactions on Image Processing, 2013, 22(5):1689-1698
    [20] Alex B, Deselaers T, Ferrari V. Measuring the objectness of image windows. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(11):2189-2202
    [21] Chang K Y, Liu T L, Chen H T, Lai S H. Fusing generic objectness and visual saliency for salient object detection. In:Proceedings of the 2011 IEEE International Conference on Computer Vision. Barcelona, Spain:IEEE, 2011. 914-921
    [22] Bao L C, Song Y B, Yang Q X, Yuan H, Wang G. Tree filtering:efficient structure-preserving smoothing with a minimum spanning tree. IEEE Transactions on Image Processing, 2014, 23(2):555-569
    [23] Vedaldi A, Soatto S. Quick shift and kernel methods for mode seeking. In:Proceedings of the 2008 European Conference on Computer Vision. Marseille, France:Springer, 2008. 705-718
    [24] Frey B J, Dueck D. Clustering by passing message between data points. Science, 2007, 315(5814):972-976
    [25] Xu D, Tang Z M, Xu W. Salient object detection based on regional contrast and relative spatial compactness. KSⅡ Transactions on Internet and Information Systems, 2013, 7(11):2737-2753
    [26] Jiang B W, Zhang L H, Lu H C, Yang C, Yang M H. Saliency detection via absorbing Markov chain. In:Proceedings of the 2013 IEEE International Conference on Computer Vision. Sydney, Australia:IEEE, 2013. 1665-1672
    [27] Jiang H Z, Wang J D, Yuan Z J, Liu T, Zheng N N, Li S P. Automatic salient object segmentation based on context and shape prior. In:Proceedings of the 2011 British Machine Vision Conference. Dundee, UK:BMVA, 2011.110.1-110.12
    [28] Zhang L, Tong M H, Marks T K, Shan H, Cottrell G W. Sun:a Bayesian framework for saliency using natural statistics. Journal of Vision, 2008, 8(7):32.1-32. 20
    [29] Harel J, Koch C, Perona P. Graph-based visual saliency. In:Proceedings of the 12th Conference on Neural Information Processing Systems. Vancouver, Canada:MIT, 2007. 545-552
    [30] Zhai Y, Shah M. Visual attention detection in video sequences using spatiotemporal cues. In:Proceedings of the 14th ACM International Conference on Multimedia. Santa Barbara, USA:ACM, 2006. 815-824
    [31] Ma Ru-Ning, Tu Xiao-Po, Ding Jun-Di, Yang Jing-Yu. To evaluate salience map towards popping out visual objects. Acta Automatica Sinica, 2012, 38(5):870-876(马儒宁, 涂小坡, 丁军娣, 杨静宇. 视觉显著性凸显目标的评价. 自动化学报, 2012, 38(5):870-876)
    [32] Li X, Li Y, Shen C H, Dick A, Van Den Hengel A. Contextual hypergraph modelling for salient object detection. In:Proceedings of the 2013 IEEE International Conference on Computer Vision. Sydney, Australia:IEEE, 2013. 3328-3335
    [33] Guo Ying-Chun, Yuan Hao-Jie, Wu Peng. Image saliency detection based on local and regional features. Acta Automatica Sinica, 2013, 39(8):1214-1224(郭迎春, 袁浩杰, 吴鹏. 基于Local特征和Regional特征的图像显著性检测. 自动化学报, 2013, 39(8):1214-1224)
    [34] Jiang Xiao-Lian, Li Cui-Hua, Li Xiong-Zong. Saliency based tracking method for abrupt motions via two-stage sampling. Acta Automatica Sinica, 2014, 40(6):1098-1107(江晓莲, 李翠华, 李雄宗. 基于视觉显著性的两阶段采样突变目标跟踪算法. 自动化学报, 2014, 40(6):1098-1107)
    [35] Mai L, Niu Y Z, Liu F. Saliency aggregation:a data-driven approach. In:Proceedings of the 2013 IEEE International Conference on Computer Vision and Pattern Recognition. Sydney, Australia:IEEE, 2013. 1131-1138
  • [1] 李阳, 王璞, 刘扬, 刘国军, 王春宇, 刘晓燕, 郭茂祖. 基于显著图的弱监督实时目标检测[J]. 自动化学报, 2020, 46(2): 242-255. doi: 10.16383/j.aas.c180789
    [2] 王松涛, 周真, 靳薇, 曲寒冰. 基于贝叶斯框架融合的RGB-D图像显著性检测[J]. 自动化学报, 2020, 46(4): 695-720. doi: 10.16383/j.aas.2018.c170232
    [3] 于明, 李博昭, 于洋, 刘依. 基于多图流形排序的图像显著性检测[J]. 自动化学报, 2019, 45(3): 577-592. doi: 10.16383/j.aas.2018.c170441
    [4] 张芳, 王萌, 肖志涛, 吴骏, 耿磊, 童军, 王雯. 基于全卷积神经网络与低秩稀疏分解的显著性检测[J]. 自动化学报, 2019, 45(11): 2148-2158. doi: 10.16383/j.aas.2018.c170535
    [5] 李东民, 李静, 梁大川, 王超. 基于多尺度先验深度特征的多目标显著性检测方法[J]. 自动化学报, 2019, 45(11): 2058-2070. doi: 10.16383/j.aas.c170154
    [6] 刘松涛, 刘振兴, 姜宁. 基于融合显著图和高效子窗口搜索的红外目标分割[J]. 自动化学报, 2018, 44(12): 2210-2221. doi: 10.16383/j.aas.2018.c170142
    [7] 林华锋, 李静, 刘国栋, 梁大川, 李东民. 基于自适应背景模板与空间先验的显著性物体检测方法[J]. 自动化学报, 2017, 43(10): 1736-1748. doi: 10.16383/j.aas.2017.c160431
    [8] 杨赛, 赵春霞, 徐威. 一种基于词袋模型的新的显著性目标检测方法[J]. 自动化学报, 2016, 42(8): 1259-1273. doi: 10.16383/j.aas.2016.c150387
    [9] 钱生, 陈宗海, 林名强, 张陈斌. 基于条件随机场和图像分割的显著性检测[J]. 自动化学报, 2015, 41(4): 711-724. doi: 10.16383/j.aas.2015.c140328
    [10] 江晓莲, 李翠华, 李雄宗. 基于视觉显著性的两阶段采样突变目标跟踪算法[J]. 自动化学报, 2014, 40(6): 1098-1107. doi: 10.3724/SP.J.1004.2014.01098
    [11] 唐勇, 杨林, 段亮亮. 基于图像单元对比度与统计特性的显著性检测[J]. 自动化学报, 2013, 39(10): 1632-1641. doi: 10.3724/SP.J.1004.2013.01632
    [12] 郭迎春, 袁浩杰, 吴鹏. 基于Local特征和Regional特征的图像显著性检测[J]. 自动化学报, 2013, 39(8): 1214-1224. doi: 10.3724/SP.J.1004.2013.01214
    [13] 马儒宁, 涂小坡, 丁军娣, 杨静宇. 视觉显著性凸显目标的评价[J]. 自动化学报, 2012, 38(5): 870-876. doi: 10.3724/SP.J.1004.2012.00870
    [14] 钱鹏江, 王士同, 邓赵红. 快速核密度估计定理和大规模图论松弛聚类方法[J]. 自动化学报, 2011, 37(12): 1422-1434. doi: 10.3724/SP.J.1004.2011.01422
    [15] 胡正平, 孟鹏权. 全局孤立性和局部同质性图表示的随机游走显著目标检测算法[J]. 自动化学报, 2011, 37(10): 1279-1284. doi: 10.3724/SP.J.1004.2011.01279
    [16] 周雪, 胡卫明. 融合颜色和增量形状先验的目标轮廓跟踪[J]. 自动化学报, 2009, 35(11): 1394-1402. doi: 10.3724/SP.J.1004.2009.01394
    [17] 李炜明, 吴毅红, 胡占义. 视角和光照显著变化时的变化检测方法研究[J]. 自动化学报, 2009, 35(5): 449-461. doi: 10.3724/SP.J.1004.2009.00449
    [18] 王开军, 张军英, 李丹, 张新娜, 郭涛. 自适应仿射传播聚类[J]. 自动化学报, 2007, 33(12): 1242-1246. doi: 10.1360/aas-007-1242
    [19] 苏保河. 一类可修系统的可靠性指标和最成检测策略[J]. 自动化学报, 2002, 28(1): 116-119.
    [20] 王晶, 刘晓平. 仿射非线性奇异系统的可逆性[J]. 自动化学报, 1998, 24(2): 254-257.
  • 加载中
计量
  • 文章访问数:  1448
  • HTML全文浏览量:  50
  • PDF下载量:  1773
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-05-04
  • 修回日期:  2014-12-03
  • 刊出日期:  2015-04-20

利用层次先验估计的显著性目标检测

doi: 10.16383/j.aas.2015.c140281
    基金项目:

    国家自然科学基金(61473154)资助

    作者简介:

    徐威 南京理工大学计算机科学与工程学院博士研究生.2009年获得南京理工大学计算机科学与技术学院学士学位.主要研究方向为图像处理,计算机视觉.E-mail:xuwei904@163.com

    通讯作者: 唐振民 南京理工大学计算机科学与工程学院教授.2002年获得南京理工大学计算机系模式识别与智能系统方向博士学位.主要研究方向为智能机器人,模式识别,图像处理与智能信息系统.本文通信作者.E-mail:tzm.cs@njust.edu.cn

摘要: 有效的显著性目标检测在计算机视觉领域一直是具有挑战性的问题.本文首先对图像进行树滤波处理,采用Quick shift方法将其分解为超像素,再通过仿射传播聚类把超像素聚集为代表性的类.与以往方法不同,本文提出根据各类中拥有的超像素的类内和类间的空间离散程度及其位于图像边界的数目,自适应地估计先验背景,并提取条状背景区域;由目标性度量(Objectness measure)粗略地描述前景范围后,通过与各类之间的空间交互信息,估计先验前景;再经过连通区域优化前景与背景信息.最后,综合考虑各超像素与先验背景和前景在CIELab颜色空间的距离,并进行显著性中心加权,得到显著图.在MSRA-1000和复杂的SOD数据库上的实验结果表明,本文算法能准确、完整地检测出显著性目标,优于21种State-of-the-art算法,包括基于部分类似原理的方法.

English Abstract

徐威, 唐振民. 利用层次先验估计的显著性目标检测. 自动化学报, 2015, 41(4): 799-812. doi: 10.16383/j.aas.2015.c140281
引用本文: 徐威, 唐振民. 利用层次先验估计的显著性目标检测. 自动化学报, 2015, 41(4): 799-812. doi: 10.16383/j.aas.2015.c140281
XU Wei, TANG Zhen-Min. Exploiting Hierarchical Prior Estimation for Salient Object Detection. ACTA AUTOMATICA SINICA, 2015, 41(4): 799-812. doi: 10.16383/j.aas.2015.c140281
Citation: XU Wei, TANG Zhen-Min. Exploiting Hierarchical Prior Estimation for Salient Object Detection. ACTA AUTOMATICA SINICA, 2015, 41(4): 799-812. doi: 10.16383/j.aas.2015.c140281
参考文献 (35)

目录

    /

    返回文章
    返回