2.793

2018影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于轮廓几何稀疏表示的刚性目标模型及其分级检测算法

林煜东 和红杰 陈帆 尹忠科

林煜东, 和红杰, 陈帆, 尹忠科. 基于轮廓几何稀疏表示的刚性目标模型及其分级检测算法. 自动化学报, 2015, 41(4): 843-853. doi: 10.16383/j.aas.2015.c130431
引用本文: 林煜东, 和红杰, 陈帆, 尹忠科. 基于轮廓几何稀疏表示的刚性目标模型及其分级检测算法. 自动化学报, 2015, 41(4): 843-853. doi: 10.16383/j.aas.2015.c130431
LIN Yu-Dong, HE Hong-Jie, CHEN Fan, YIN Zhong-Ke. A Rigid Object Detection Model Based on Geometric Sparse Representation of Profile and Its Hierarchical Detection Algorithm. ACTA AUTOMATICA SINICA, 2015, 41(4): 843-853. doi: 10.16383/j.aas.2015.c130431
Citation: LIN Yu-Dong, HE Hong-Jie, CHEN Fan, YIN Zhong-Ke. A Rigid Object Detection Model Based on Geometric Sparse Representation of Profile and Its Hierarchical Detection Algorithm. ACTA AUTOMATICA SINICA, 2015, 41(4): 843-853. doi: 10.16383/j.aas.2015.c130431

基于轮廓几何稀疏表示的刚性目标模型及其分级检测算法


DOI: 10.16383/j.aas.2015.c130431
详细信息
    作者简介:

    林煜东 西南交通大学信息科学与技术学院博士研究生.2006年获得华南农业大学信息学院学士学位.2009年获得华南农业大学信息学院硕士学位.主要研究方向为图像表示与图像目标检测.E-mail:willianlam@126.com

    通讯作者: 陈帆 博士,西南交通大学信息科学与技术学院副教授.主要研究方向为多媒体数据安全,图像处理,计算机应用技术.本文通信作者.E-mail:fchen@home.swjtu.edu.cn
  • 基金项目:

    国家自然科学基金(61461047)资助

A Rigid Object Detection Model Based on Geometric Sparse Representation of Profile and Its Hierarchical Detection Algorithm

More Information
  • Fund Project:

    Supported by National Natural Science Foundation of China(61461047)

  • 摘要: 刚性目标轮廓具有明显几何特性且不易受光照、纹理和颜色等因素影响.结合上述特性和图像稀疏表示原理,提出一种适用于刚性目标的分级检测算法.在基于部件模型(Part-based model, PBM)的框架下,采用匹配追踪算法将目标轮廓自适应地稀疏表示为几何部件的组合,根据部件与目标轮廓的匹配度,构建描述部件空间关系的有序链式结构.利用该链式结构的有序特性逐级缩小待检测范围,以匹配度为权值对各级部件显著图进行加权融合生成目标显著图. PASCAL图像库上的检测结果表明,该检测方法对具有显著轮廓特征的刚性目标有较好的检测结果,检测时耗较现有算法减少约60%~90%.
  • [1] Li Wan-Yi, Wang Peng, Qiao Hong. A survey of visual attention based methods for object tracking. Acta Automatica Sinica, 2014, 40(4):561-576(黎万义, 王鹏, 乔红. 引入视觉注意机制的目标跟踪方法综述. 自动化学报, 2014, 40(4):561-576)
    [2] Jiang Xiao-Lian, Li Cui-Hua, Li Xiong-Zong. Saliency based tracking method for abrupt motions via two-stage sampling. Acta Automatica Sinica, 2014, 40(6):1098-1107(江晓莲, 李翠华, 李雄宗. 基于视觉显著性的两阶段采样突变目标跟踪算法. 自动化学报, 2014, 40(6):1098-1107)
    [3] [3] Wang X, Lv Q, Wang B, Zhang L M. Airport detection in remote sensing images:a method based on saliency map. Cognitive Neurodynamics, 2013, 7(2):143-154
    [4] Han Min, Zheng Dan-Chen. Shape recognition based on fuzzy shape context. Acta Automatica Sinica, 2012, 38(1):68-75(韩敏, 郑丹晨. 基于模糊形状上下文特征的形状识别算法. 自动化学报, 2012, 38(1):68-75)
    [5] [5] Lin Y D, He H J, Yin Z K, Chen F. Rotation-invariant object detection in remote sensing images based on radial-gradient angle. IEEE Geoscience and Remote Sensing Letters, 2015, 12(4):746-750
    [6] [6] Sun H, Sun X, Wang H Q, Li Y, Li X J. Automatic target detection in high-resolution remote sensing images using spatial sparse coding bag-of-words model. IEEE Geoscience and Remote Sensing Letter, 2012, 9(1):109-113
    [7] [7] Liu L, Shi Z W. Airplane detection based on rotation invariant and sparse coding in remote sensing images. Optik, 2014, 125(18):5327-5333
    [8] [8] Lei Z, Fang T, Huo H, Li D R. Rotation-invariant object detection of remotely sensed images based on texton forest and Hough voting. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(4):1206-1217
    [9] [9] Xu J, Sun X, Zhang D B, Fu K. Automatic detection of inshore ships in high-resolution remote sensing images using robust invariant generalized Hough transform. IEEE Geoscience and Remote Sensing Letters, 2014, 11(12):2070-2074
    [10] Csurka G, Dance C R, Fan L X, Willamowski J, Bray C. Visual categorization with bags of keypoints. In:Proceedings of the 2004 European Conference on Computer Vision. Prague, Czech Republic:Springer, 2004. 1-22
    [11] Felzenszwalb P F, Huttenlocher D P. Pictorial structures for object recognition. International Journal of Computer Vision, 2005, 61(1):55-79
    [12] Song X, Luo P, Lin L, Jia Y D. A discriminative model for object representation and detection via sparse features. In:Proceedings of the 20th International Conference on Pattern Recognition. Istanbul, Turkey:IEEE, 2010. 3077-3080
    [13] Sun X, Wang H Q, Fu K. Automatic detection of geospatial objects using taxonomic semantics. IEEE Geoscience and Remote Sensing Letters, 2010, 7(1):23-27
    [14] Felzenszwalb P F, Girshick R B, McAllester D. Object detection with discriminatively trained part-based models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(9):1627-1645
    [15] Zhu L, Chen Y H, Yuille A, Freeman W. Latent hierarchical structural learning for object detection. In:Proceedings of the 2010 IEEE Conference on Computer Vision and Pattern Recognition. San Francisco, CA, USA:IEEE, 2010. 1062-1069
    [16] Lu C E, Adluru N, Ling H B, Zhu G X, Latecki L J. Contour based object detection using part bundles. Computer Vision and Image Understanding, 2010, 114(7):827-834
    [17] Zhang H G, Wang J X, Bai X, Zhou J, Cheng J, Zhao H J. Object detection via foreground contour feature selection and part-based shape model. In:Proceedings of the 21st International Conference on Pattern Recognition. Tsukuba, Japan:IEEE, 2012. 2524-2527
    [18] Xi Hui-Ting. Study on Rigid Moving Target Tracking Algorithm [Master dissertation], East China Normal University, China, 2008.(奚慧婷. 刚性运动目标的跟踪算法研究 [硕士学位论文], 华东师范大学, 中国, 2008.)
    [19] Fergus R, Perona P, Zisserman A. Object class recognition by unsupervised scale-invariant learning. In:Proceedings of the 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Madison, Wisconsin, USA:IEEE, 2003. Ⅱ-264-Ⅱ-271
    [20] Crandall D, Felzenszwalb P F, Huttenlocher D P. Spatial priors for part-based recognition using statistical models. In:Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego, CA, USA:IEEE, 2005. 10-17
    [21] Felzenszwalb P F, Huttenlocher D P. Efficient matching of pictorial structures. In:Proceedings of the 2000 IEEE Conference on Computer Vision and Pattern Recognition. Hilton Head Island, South Carolina, USA:IEEE, 2000. 66-73
    [22] Carneiro G, Lowe D. Sparse flexible models of local features. In:Proceedings of the 9th European Conference on Computer Vision. Graz, Austria:Springer, 2006. 29-43
    [23] Wang Jian-Ying, Yin Zhong-Ke, Zhang Chun-Mei. The Sparse Decomposition and Application for Signals and Images. Chengdu:Southwest Jiaotong University Press, 2006. 49-57(王建英, 尹忠科, 张春梅. 信号与图像的稀疏分解及初步应用. 成都:西南交通大学出版社, 2006. 49-57)
    [24] Li Heng-Jian, Yin Zhong-Ke, Wang Jian-Ying. Image sparse decomposition based on quantum genetic algorithm. Journal of Southwest Jiaotong University, 2007, 42(1):19-23(李恒建, 尹忠科, 王建英. 基于量子遗传优化算法的图像稀疏分解. 西南交通大学学报, 2007, 42(1):19-23)
    [25] Yang Yang, Li Shan-Ping. Fast object detection with deformable part models and segment locations' hint. Acta Automatica Sinica, 2012, 38(4):540-548(杨扬, 李善平. 分割位置提示的可变形部件模型快速目标检测. 自动化学报, 2012, 38(4):540-548)
    [26] Dalal N, Triggs B. Histograms of oriented gradients for human detection. In:Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego, CA, USA:IEEE, 2005. 886-893
    [27] Neubeck A, van Gool L. Efficient non-maximum suppression. In:Proceedings of the 18th International Conference on Pattern Recognition. Hong Kong, China:IEEE, 2006. 850-855
    [28] Barinova O, Lempitsky V, Kohli P. On detection of multiple object instances using Hough transforms. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(9):1773-1784
    [29] Lu Wen-Hao, Li Ya-Li, Wang Sheng-Jin, Ding Xiao-Qing. Improvements of 3D object detection with part-based models. Acta Automatica Sinica, 2012, 38(4):497-506(鹿文浩, 李亚利, 王生进, 丁晓青. 基于部件的三维目标检测算法新进展. 自动化学报, 2012, 38(4):497-506)
  • [1] 李阳, 王璞, 刘扬, 刘国军, 王春宇, 刘晓燕, 郭茂祖. 基于显著图的弱监督实时目标检测[J]. 自动化学报, 2020, 46(2): 242-255. doi: 10.16383/j.aas.c180789
    [2] 孟琭, 孙霄宇, 赵滨, 李楠. 基于卷积神经网络的铁轨路牌识别方法[J]. 自动化学报, 2020, 46(3): 518-530. doi: 10.16383/j.aas.c190182
    [3] 周波, 李俊峰. 结合目标检测的人体行为识别[J]. 自动化学报, 2020, 46(9): 1961-1970. doi: 10.16383/j.aas.c180848
    [4] 黄宏图, 毕笃彦, 侯志强, 胡长城, 高山, 查宇飞, 库涛. 基于稀疏表示的视频目标跟踪研究综述[J]. 自动化学报, 2018, 44(10): 1747-1763. doi: 10.16383/j.aas.2018.c170209
    [5] 尹宏鹏, 陈波, 柴毅, 刘兆栋. 基于视觉的目标检测与跟踪综述[J]. 自动化学报, 2016, 42(10): 1466-1489. doi: 10.16383/j.aas.2016.c150823
    [6] 徐威, 唐振民. 利用层次先验估计的显著性目标检测[J]. 自动化学报, 2015, 41(4): 799-812. doi: 10.16383/j.aas.2015.c140281
    [7] 张桂梅, 张松, 储珺. 一种新的基于局部轮廓特征的目标检测方法[J]. 自动化学报, 2014, 40(10): 2346-2355. doi: 10.3724/SP.J.1004.2014.02346
    [8] 魏广芬, 苏峰, 简涛. 稀疏距离扩展目标自适应检测及性能分析[J]. 自动化学报, 2013, 39(7): 1126-1132. doi: 10.3724/SP.J.1004.2013.01126
    [9] 宋克臣, 颜云辉, 陈文辉, 张旭. 局部二值模式方法研究与展望[J]. 自动化学报, 2013, 39(6): 730-744. doi: 10.3724/SP.J.1004.2013.00730
    [10] 鹿文浩, 李亚利, 王生进, 丁晓青. 基于部件的三维目标检测算法新进展[J]. 自动化学报, 2012, 38(4): 497-506. doi: 10.3724/SP.J.1004.2012.00497
    [11] 杨扬, 李善平. 分割位置提示的可变形部件模型快速目标检测[J]. 自动化学报, 2012, 38(4): 540-548. doi: 10.3724/SP.J.1004.2012.00540
    [12] 王彦情, 马雷, 田原. 光学遥感图像舰船目标检测与识别综述[J]. 自动化学报, 2011, 37(9): 1029-1039. doi: 10.3724/SP.J.1004.2011.01029
    [13] 胡正平, 孟鹏权. 全局孤立性和局部同质性图表示的随机游走显著目标检测算法[J]. 自动化学报, 2011, 37(10): 1279-1284. doi: 10.3724/SP.J.1004.2011.01279
    [14] 赵旭东, 刘鹏, 唐降龙, 刘家锋. 一种适应户外光照变化的背景建模及目标检测方法[J]. 自动化学报, 2011, 37(8): 915-922. doi: 10.3724/SP.J.1004.2011.00915
    [15] 崔潇潇, 王贵锦, 林行刚. 基于Adaboost权值更新以及K-L距离的特征选择算法[J]. 自动化学报, 2009, 35(5): 462-468. doi: 10.3724/SP.J.1004.2009.00462
    [16] 葛俊锋, 罗予频. 非对称AdaBoost算法及其在目标检测中的应用[J]. 自动化学报, 2009, 35(11): 1403-1409. doi: 10.3724/SP.J.1004.2009.1403
    [17] 崔潇潇, 姚安邦, 王贵锦, 林行刚. 基于级联Adaboost的目标检测融合算法[J]. 自动化学报, 2009, 35(4): 417-424. doi: 10.3724/SP.J.1004.2009.00417
    [18] 徐剑, 丁晓青, 王生进. 基于目标存在概率场的多视角运动目标检测与对应算法[J]. 自动化学报, 2008, 34(5): 609-612. doi: 10.3724/SP.J.1004.2008.00609
    [19] 叶斌, 彭嘉雄, 卢汉清. 顺序形态滤波在小目标和点目标检测中的应用研究[J]. 自动化学报, 2002, 28(6): 990-994.
    [20] 汪国有, 张天序, 魏洛刚, 桑农. 一种多尺度分形特征目标检测方法[J]. 自动化学报, 1997, 23(1): 121-124.
  • 加载中
计量
  • 文章访问数:  1372
  • HTML全文浏览量:  50
  • PDF下载量:  1311
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-05-22
  • 修回日期:  2014-11-15
  • 刊出日期:  2015-04-20

基于轮廓几何稀疏表示的刚性目标模型及其分级检测算法

doi: 10.16383/j.aas.2015.c130431
    基金项目:

    国家自然科学基金(61461047)资助

    作者简介:

    林煜东 西南交通大学信息科学与技术学院博士研究生.2006年获得华南农业大学信息学院学士学位.2009年获得华南农业大学信息学院硕士学位.主要研究方向为图像表示与图像目标检测.E-mail:willianlam@126.com

    通讯作者: 陈帆 博士,西南交通大学信息科学与技术学院副教授.主要研究方向为多媒体数据安全,图像处理,计算机应用技术.本文通信作者.E-mail:fchen@home.swjtu.edu.cn

摘要: 刚性目标轮廓具有明显几何特性且不易受光照、纹理和颜色等因素影响.结合上述特性和图像稀疏表示原理,提出一种适用于刚性目标的分级检测算法.在基于部件模型(Part-based model, PBM)的框架下,采用匹配追踪算法将目标轮廓自适应地稀疏表示为几何部件的组合,根据部件与目标轮廓的匹配度,构建描述部件空间关系的有序链式结构.利用该链式结构的有序特性逐级缩小待检测范围,以匹配度为权值对各级部件显著图进行加权融合生成目标显著图. PASCAL图像库上的检测结果表明,该检测方法对具有显著轮廓特征的刚性目标有较好的检测结果,检测时耗较现有算法减少约60%~90%.

English Abstract

林煜东, 和红杰, 陈帆, 尹忠科. 基于轮廓几何稀疏表示的刚性目标模型及其分级检测算法. 自动化学报, 2015, 41(4): 843-853. doi: 10.16383/j.aas.2015.c130431
引用本文: 林煜东, 和红杰, 陈帆, 尹忠科. 基于轮廓几何稀疏表示的刚性目标模型及其分级检测算法. 自动化学报, 2015, 41(4): 843-853. doi: 10.16383/j.aas.2015.c130431
LIN Yu-Dong, HE Hong-Jie, CHEN Fan, YIN Zhong-Ke. A Rigid Object Detection Model Based on Geometric Sparse Representation of Profile and Its Hierarchical Detection Algorithm. ACTA AUTOMATICA SINICA, 2015, 41(4): 843-853. doi: 10.16383/j.aas.2015.c130431
Citation: LIN Yu-Dong, HE Hong-Jie, CHEN Fan, YIN Zhong-Ke. A Rigid Object Detection Model Based on Geometric Sparse Representation of Profile and Its Hierarchical Detection Algorithm. ACTA AUTOMATICA SINICA, 2015, 41(4): 843-853. doi: 10.16383/j.aas.2015.c130431
参考文献 (29)

目录

    /

    返回文章
    返回