| [1] | Szegedy C, Toshev A, Erhan D. Deep neural networks for object detection. In:Proceedings of the 2013 Advances in Neural Information Processing Systems (NIPS). Harrahs and Harveys, Lake Tahoe, USA:MIT Press, 2013. 2553-2561 | 
		
				| [2] | Felzenszwalb P F, Girshick R B, McAllester D, Ramanan D. Object detection with discriminatively trained part-based models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(9):1627-1645 doi:  10.1109/TPAMI.2009.167 | 
		
				| [3] | 黄凯奇, 任伟强, 谭铁牛.图像物体分类与检测算法综述.计算机学报, 2014, 37(6):1225-1240 http://www.cnki.com.cn/Article/CJFDTOTAL-JSJX201406001.htmHuang Kai-Qi, Ren Wei-Qiang, Tan Tie-Niu. A review on image object classification and detection. Chinese Journal of Computers, 2014, 37(6):1225-1240 http://www.cnki.com.cn/Article/CJFDTOTAL-JSJX201406001.htm | 
		
				| [4] | Zhang X, Yang Y H, Han Z G, Wang H, Gao C. Object class detection:a survey. ACM Computing Surveys (CSUR), 2013, 46(1):Article No. 10 http://dl.acm.org/citation.cfm?id=2522978 | 
		
				| [5] | Dalal N, Triggs B. Histograms of oriented gradients for human detection. In:Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR). San Diego, CA, USA:IEEE, 2005, 1:886-893 | 
		
				| [6] | Uijlings J R R, van de Sande K E A, Gevers T, Smeulders A W M. Selective search for object recognition. International Journal of Computer Vision, 2013, 104(2):154-171 doi:  10.1007/s11263-013-0620-5 | 
		
				| [7] | Ren S Q, He K M, Girshick R, Sun J. Faster R-CNN:towards real-time object detection with region proposal networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6):1137-1149 doi:  10.1109/TPAMI.2016.2577031 | 
		
				| [8] | He K M, Zhang X Y, Ren S Q, Sun J. Deep residual learning for image recognition. In:Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, Nevada, USA:IEEE, 2016. 770-778 | 
		
				| [9] | Lampert C H, Blaschko M B, Hofmann T. Beyond sliding windows:object localization by efficient subwindow search. In:Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Anchorage, Alaska, USA:IEEE, 2008. 1-8 | 
		
				| [10] | An S J, Peursum P, Liu W Q, Venkatesh S. Efficient algorithms for subwindow search in object detection and localization. In:Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Miami, Florida, USA:IEEE, 2009. 264-271 | 
		
				| [11] | Wei Y C, Tao L T. Efficient histogram-based sliding window. In:Proceedings of the 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). San Francisco, CA, USA:IEEE, 2010. 3003-3010 | 
		
				| [12] | Van de Sande K E A, Uijlings J R R, Gevers T, Smeulders A W M. Segmentation as selective search for object recognition. In:Proceedings of the 2011 IEEE International Conference on Computer Vision (ICCV). Barcelona, Spain:IEEE, 2011. 1879-1886 | 
		
				| [13] | Shotton J, Blake A, Cipolla R. Multiscale categorical object recognition using contour fragments. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 30(7):1270-1281 doi:  10.1109/TPAMI.2007.70772 | 
		
				| [14] | Leibe B, Leonardis A, Schiele B. Robust object detection with interleaved categorization and segmentation. International Journal of Computer Vision, 2008, 77(1-3):259-289 doi:  10.1007/s11263-007-0095-3 | 
		
				| [15] | Arbelaez P, Maire M, Fowlkes C, Malik J. Contour detection and hierarchical image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(5):898-916 doi:  10.1109/TPAMI.2010.161 | 
		
				| [16] | Shotton J, Winn J, Rother C, Criminisi A. TextonBoost:joint appearance, shape and context modeling for multi-class object recognition and segmentation. In:Proceedings of the 9th European Conference on Computer Vision (ECCV). Berlin, Heidelberg, Germany:Springer, 2006. 1-15 | 
		
				| [17] | Verbeek J, Triggs B. Region classification with Markov field aspect models. In:Proceedings of the 2007 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Minneapolis, Minnesota, USA:IEEE, 2007. 1-8 | 
		
				| [18] | Cheng M M, Zhang Z M, Lin W Y, Torr P. BING:binarized normed gradients for objectness estimation at 300fps. In:Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Columbus, USA:IEEE, 2014. 3286-3293 | 
		
				| [19] | Zitnick C L, Dollár P. Edge boxes:locating object proposals from edges. In:Proceedings of the 13th European Conference on Computer Vision (ECCV). Zurich, Switzerland:Springer, 2014. 391-405 | 
		
				| [20] | Hosang J, Benenson R, Schiele B. How good are detection proposals, really? arXiv:1406.6962, 2014. | 
		
				| [21] | Szegedy C, Reed S, Erhan D, Anguelov D, Ioffe S. Scalable, high-quality object detection. arXiv:1412.1441, 2014. | 
		
				| [22] | Erhan D, Szegedy C, Toshev A, Anguelov D. Scalable object detection using deep neural networks. In:Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Columbus, Ohio, USA:IEEE, 2014. 2155-2162 | 
		
				| [23] | Kuo W C, Hariharan B, Malik J. Deepbox:learning objectness with convolutional networks. In:Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV). Santiago, Chile:IEEE, 2015. 2479-2487 | 
		
				| [24] | Ghodrati A, Diba A, Pedersoli M, Tuytelaars T, Van Gool L. Deepproposal:hunting objects by cascading deep convolutional layers. In:Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV). Santiago, Chile:IEEE, 2015. 2578-2586 | 
		
				| [25] | Gidaris S, Komodakis N. Locnet:improving localization accuracy for object detection. In:Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, NV, USA:IEEE, 2016. 789-798 | 
		
				| [26] | Lawrence G R. Machine Perception of Three-dimensional Solids[Ph.D. dissertation], Massachusetts Institute of Technology, USA, 1963. | 
		
				| [27] | Canny J. A computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1986, PAMI-8(6):679-698 doi:  10.1109/TPAMI.1986.4767851 | 
		
				| [28] | Marr D, Hildreth E. Theory of edge detection. Proceedings of the Royal Society B:Biological Sciences, 1980, 207(1167):187-217 doi:  10.1098/rspb.1980.0020 | 
		
				| [29] | Pellegrino F A, Vanzella W, Torre V. Edge detection revisited. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 2004, 34(3):1500-1518 doi:  10.1109/TSMCB.2004.824147 | 
		
				| [30] | Harris C, Stephens M. A combined corner and edge detector. In:Proceedings of the 4th Alvey Vision Conference. Manchester, UK:University of Sheffield Printing Unit, 1988. 147-151 | 
		
				| [31] | Rosten E, Porter R, Drummond T. Faster and better:a machine learning approach to corner detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(1):105-119 doi:  10.1109/TPAMI.2008.275 | 
		
				| [32] | Lowe D G. Object recognition from local scale-invariant features. In:Proceedings of the 7th IEEE International Conference on Computer Vision (ICCV). Kerkyra, Greece:IEEE, 1999, 2:1150-1157 | 
		
				| [33] | Lowe D G. Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 2004, 60(2):91-110 doi:  10.1023/B:VISI.0000029664.99615.94 | 
		
				| [34] | Papageorgiou C P, Oren M, Poggio T. A general framework for object detection. In:Proceedings of the 6th International Conference on Computer Vision (ICCV). Bombay, India:IEEE, 1998. 555-562 | 
		
				| [35] | Ojala T, Pietikäinen M, Harwood D. Performance evaluation of texture measures with classification based on Kullback discrimination of distributions. In:Proceedings of the 12th IAPR International Conference on Pattern Recognition, Conference A:Computer Vision and Image Processing. Jerusalem, Israel, Palestine:IEEE, 1994, 1:582-585 | 
		
				| [36] | Ojala T, Pietikäinen M, Harwood D. A comparative study of texture measures with classification based on featured distributions. Pattern Recognition, 1996, 29(1):51-59 doi:  10.1016/0031-3203(95)00067-4 | 
		
				| [37] | Yan J J, Lei Z, Yi D, Li S Z. Multi-pedestrian detection in crowded scenes:a global view. In:Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Providence, Rhode Island, USA:IEEE, 2012. 3124-3129 | 
		
				| [38] | Yan J J, Zhang X C, Lei Z, Liao S C, Li S Z. Robust multi-resolution pedestrian detection in traffic scenes. In:Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Portland, Oregon, USA:IEEE, 2013. 3033-3040 | 
		
				| [39] | Yan J J, Zhang X C, Lei Z, Yi D, Li S Z. Structural models for face detection. In:Proceedings of the 10th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG). Shanghai, China:IEEE, 2013. 1-6 | 
		
				| [40] | Zhu X X, Ramanan D. Face detection, pose estimation, and landmark localization in the wild. In:Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Providence, Rhode Island, USA:IEEE, 2012. 2879-2886 | 
		
				| [41] | Yang Y, Ramanan D. Articulated pose estimation with flexible mixtures-of-parts. In:Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Providence, RI, USA:IEEE, 2011. 1385-1392 | 
		
				| [42] | Yan J J, Lei Z, Wen L Y, Li S Z. The fastest deformable part model for object detection. In:Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Columbus, Ohio, USA:IEEE, 2014. 2497-2504 | 
		
				| [43] | Lazebnik S, Schmid C, Ponce J. Beyond bags of features:spatial pyramid matching for recognizing natural scene categories. In:Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR). New York, NY, USA:IEEE, 2006. 2169-2178 | 
		
				| [44] | Girshick R, Donahue J, Darrell T, Malik J. Rich feature hierarchies for accurate object detection and semantic segmentation. In:Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Columbus, Ohio, USA:IEEE, 2014. 580-587 | 
		
				| [45] | Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, Huang Z H, Karpathy A, Khosla A, Bernstein M, Berg A C, Fei-Fei L. ImageNet large scale visual recognition challenge. International Journal of Computer Vision, 2015, 115(3):211-252 doi:  10.1007/s11263-015-0816-y | 
		
				| [46] | Everingham M, Van Gool L, Williams C K I, Winn J, Zisserman A. The PASCAL visual object classes (VOC) challenge. International Journal of Computer Vision, 2010, 88(2):303-338 doi:  10.1007/s11263-009-0275-4 | 
		
				| [47] | Xiao J X, Hays J, Ehinger K A, Oliva A, Torralba A. Sun database:large-scale scene recognition from abbey to zoo. In:Proceedings of the 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). San Francisco, CA, USA:IEEE, 2010. 3485-3492 | 
		
				| [48] | Lin T Y, Maire M, Belongie S, Hays J, Perona P, Ramanan D, Dollár P, Zitnick C L. Microsoft COCO:common objects in context. In:Proceedings of the 13th European Conference on Computer Vision (ECCV). Zurich, Switzerland:Springer, 2014. 740-755 | 
		
				| [49] | Rumelhart D E, Hinton G E, Williams R J. Learning representations by back-propagating errors. Nature, 1986, 323(6088):533-536 doi:  10.1038/323533a0 | 
		
				| [50] | LeCun Y, Bengio Y, Hinton G. Deep learning. Nature, 2015, 521(7553):436-444 doi:  10.1038/nature14539 | 
		
				| [51] | Hinton G E, Salakhutdinov R R. Reducing the dimensionality of data with neural networks. Science, 2006, 313(5786):504-507 doi:  10.1126/science.1127647 | 
		
				| [52] | Hinton G E, Osindero S, Teh Y W. A fast learning algorithm for deep belief nets. Neural Computation, 2006, 18(7):1527-1554 doi:  10.1162/neco.2006.18.7.1527 | 
		
				| [53] | Bengio Y, Lamblin P, Popovici D, Larochelle H. Greedy layer-wise training of deep networks. In:Proceedings of the 19th International Conference on Neural Information Processing Systems. Cambridge, MA, USA:MIT Press, 2006. 153-160 | 
		
				| [54] | LeCun Y, Chopra S, Hadsell R, Ranzato M, Huang F. A tutorial on energy-based learning. Predicting Structured Data. Cambridge, MA, USA:MIT Press, 2006. | 
		
				| [55] | Lee H, Ekanadham C, Ng A Y. Sparse deep belief net model for visual area V2. In:Proceedings of the 2007 Advances in Neural Information Processing Systems (NIPS). Vancouver, British Columbia, Canada:MIT Press, 2007. 873-880 | 
		
				| [56] | Hinton G, Deng L, Yu D, Dahl G E, Mohamed A R, Jaitly N, Senior A, Vanhoucke V, Nguyen P, Sainath T N, Kingsbury B. Deep neural networks for acoustic modeling in speech recognition:the shared views of four research groups. IEEE Signal Processing Magazine, 2012, 29(6):82-97 doi:  10.1109/MSP.2012.2205597 | 
		
				| [57] | Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks. In:Proceedings of the 25th International Conference on Neural Information Processing Systems. Lake Tahoe, Nevada, USA:MIT Press, 2012. 1097-1105 | 
		
				| [58] | Girshick R. Fast R-CNN. In:Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV). Santiago, Chile:IEEE, 2015. 1440-1448 | 
		
				| [59] | Lecun Y, Bottou L, Bengio Y, Haffner P. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 1998, 86(11):2278-2324 doi:  10.1109/5.726791 | 
		
				| [60] | Vincent P, Larochelle H, Bengio Y, Manzagol P A. Extracting and composing robust features with denoising Autoencoders. In:Proceedings of the 25th IEEE International Conference on Machine Learning (ICML). Helsinki, Finland:IEEE, 2008. 1096-1103 | 
		
				| [61] | Masci J, Meier U, Cireşan D, Schmidhuber J. Stacked convolutional auto-encoders for hierarchical feature extraction. In:Proceedings of the 21th International Conference on Artificial Neural Networks. Berlin, Heidelberg, Germany:Springer, 2011. 52-59 | 
		
				| [62] | Zeiler M D, Fergus R. Visualizing and understanding convolutional networks. In:Proceedings of the 13th European Conference on Computer Vision (ECCV). Zurich, Switzerland:Springer, 2014. 818-833 | 
		
				| [63] | Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. arXiv:1409.1556, 2014. | 
		
				| [64] | Szegedy C, Liu W, Jia Y Q, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A. Going deeper with convolutions. In:Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Boston, Massachusetts, USA:IEEE, 2015. 1-9 | 
		
				| [65] | Szegedy C, Ioffe S, Vanhoucke V, Alemi A. Inception-v4, Inception-ResNet and the impact of residual connections on learning. arXiv:1602.07261, 2016. | 
		
				| [66] | Ioffe S, Szegedy C. Batch normalization:accelerating deep network training by reducing internal covariate shift. arXiv:1502.03167, 2015. | 
		
				| [67] | Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z. Rethinking the inception architecture for computer vision. arXiv:1512.00567, 2015. | 
		
				| [68] | He K, Zhang X, Ren S, Sun J. Spatial pyramid pooling in deep convolutional networks for visual recognition. In:Proceedings of the 2014 European Conference on Computer Vision (ECCV). Zurich, Switzerland:Springer, 2014. 346-361 | 
		
				| [69] | Bell S, Lawrence Zitnick C, Bala K, Girshick R. Inside-outside net:detecting objects in context with skip pooling and recurrent neural networks. In:Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, NV, USA:IEEE, 2016. 2874-2883 | 
		
				| [70] | Yang F, Choi W, Lin Y Q. Exploit all the layers:fast and accurate CNN object detector with scale dependent pooling and cascaded rejection classifiers. In:Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, NV, USA:IEEE, 2016. 2129-2137 | 
		
				| [71] | Shrivastava A, Gupta A, Girshick R. Training region-based object detectors with online hard example mining. In:Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, NV, USA:IEEE, 2016. 761-769 | 
		
				| [72] | Sung K K. Learning and Example Selection for Object and Pattern Detection[Ph.D. dissertation], Massachusetts Institute of Technology, USA, 1996. | 
		
				| [73] | Kong T, Yao A B, Chen Y R, Sun F C. HyperNet:towards accurate region proposal generation and joint object detection. In:Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, NV, USA:IEEE, 2016. 845-853 | 
		
				| [74] | Dai J F, Li Y, He K M, Sun J. R-FCN:object detection via region-based fully convolutional networks. In:Proceedings of the 2016 Advances in Neural Information Processing Systems (NIPS). Barcelona, Spain:MIT Press, 2016. 379-387 | 
		
				| [75] | Kim K H, Hong S, Roh B, Cheon Y, Park M. PVANET:deep but lightweight neural networks for real-time object detection. arXiv:1608.08021, 2016. | 
		
				| [76] | Shang W L, Sohn K, Almeida D, Lee H. Understanding and improving convolutional neural networks via concatenated rectified linear units. In:Proceedings of the 33rd International Conference on Machine Learning (ICML). New York, USA:IEEE, 2016. 2217-2225 | 
		
				| [77] | Sermanet P, Eigen D, Zhang X, Mathieu M, Fergus R, LeCun Y. Overfeat:integrated recognition, localization and detection using convolutional networks. arXiv:1312.6229, 2013. | 
		
				| [78] | Redmon J, Divvala S, Girshick R, Farhadi A. You only look once:unified, real-time object detection. In:Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, NV, USA:IEEE, 2016. 779-788 | 
		
				| [79] | Najibi M, Rastegari M, Davis L S. G-CNN:an iterative grid based object detector. In:Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, NV, USA:IEEE, 2016. 2369-2377 | 
		
				| [80] | Liu W, Anguelov D, Erhan D, Szegedy C, Reed S E, Fu C Y, Berg A C. SSD:single shot multibox detector. In:Proceedings of the 14th European Conference on Computer Vision (ECCV). Amsterdam, Netherlands:Springer, 2016. 21-37 | 
		
				| [81] | Redmon J, Farhadi A. YOLO9000:better, faster, stronger. arXiv:1612.08242, 2016. | 
		
				| [82] | Pepik B, Benenson R, Ritschel T, Schiele B. What is holding back convnets for detection? In:Proceedings of the 2015 German Conference on Pattern Recognition. Cham, Germany:Springer, 2015. 517-528 | 
		
				| [83] | Xiang Y, Mottaghi R, Savarese S. Beyond PASCAL:a benchmark for 3d object detection in the wild. In:Proceedings of the 2014 IEEE Winter Conference on Applications of Computer Vision (WACV). Steamboat Springs, Colorado, USA:IEEE, 2014. 75-82 | 
		
				| [84] | Amazon Mechanical Turk[Online], available:https://www.mturk.com/, February 13, 2017 | 
		
				| [85] | 王坤峰, 苟超, 王飞跃.平行视觉:基于ACP的智能视觉计算方法.自动化学报, 2016, 42(10):1490-1500 http://www.aas.net.cn/CN/abstract/abstract18936.shtmlWang Kun-Feng, Gou Chao, Wang Fei-Yue. Parallel vision:an ACP-based approach to intelligent vision computing. Acta Automatica Sinica, 2016, 42(10):1490-1500 http://www.aas.net.cn/CN/abstract/abstract18936.shtml | 
		
				| [86] | Wang K F, Gou C, Zheng N N, Rehg J M, Wang F Y. Parallel vision for perception and understanding of complex scenes:methods, framework, and perspectives. Artificial Intelligence Review[Online], available:https://link.springer.com/article/10.1007/s10462-017-9569-z, July 18, 2017 | 
		
				| [87] | 王飞跃.平行系统方法与复杂系统的管理和控制.控制与决策, 2004, 19(5):485-489, 514 http://www.cnki.com.cn/Article/CJFDTOTAL-KZYC200405001.htmWang Fei-Yue. Parallel system methods for management and control of complex systems. Control and Decision, 2004, 19(5):485-489, 514 http://www.cnki.com.cn/Article/CJFDTOTAL-KZYC200405001.htm | 
		
				| [88] | Wang F Y. Parallel control and management for intelligent transportation systems:concepts, architectures, and applications. IEEE Transactions on Intelligent Transportation Systems, 2010, 11(3):630-638 doi:  10.1109/TITS.2010.2060218 | 
		
				| [89] | 王飞跃.平行控制:数据驱动的计算控制方法.自动化学报, 2013, 39(4):293-302 http://www.aas.net.cn/CN/abstract/abstract17915.shtmlWang Fei-Yue. Parallel control:a method for data-driven and computational control. Acta Automatica Sinica, 2013, 39(4):293-302 http://www.aas.net.cn/CN/abstract/abstract17915.shtml | 
		
				| [90] | Peng X C, Sun B C, Ali K, Saenko K. Learning deep object detectors from 3D models. In:Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV). Santiago, Chile:IEEE, 2015. 1278-1286 | 
		
				| [91] | Johnson-Roberson M, Barto C, Mehta R, Sridhar S N, Rosaen K, Vasudevan R. Driving in the matrix:can virtual worlds replace human-generated annotations for real world tasks? arXiv:1610.01983, 2016. | 
		
				| [92] | Pan S J, Yang Q. A survey on transfer learning. IEEE Transactions on Knowledge and Data Engineering, 2010, 22(10):1345-1359 doi:  10.1109/TKDE.2009.191 | 
		
				| [93] | Taylor M E, Stone P. Transfer learning for reinforcement learning domains:a survey. The Journal of Machine Learning Research, 2009, 10:1633-1685 http://dl.acm.org/citation.cfm?doid=1577069.1755839 |