2.624

2020影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

线性均方一致性问题的偏差估计

窦全胜 刘柏枫 厉玉蓉 史忠植

窦全胜, 刘柏枫, 厉玉蓉, 史忠植. 线性均方一致性问题的偏差估计. 自动化学报, 2017, 43(4): 568-575. doi: 10.16383/j.aas.2017.c160064
引用本文: 窦全胜, 刘柏枫, 厉玉蓉, 史忠植. 线性均方一致性问题的偏差估计. 自动化学报, 2017, 43(4): 568-575. doi: 10.16383/j.aas.2017.c160064
DOU Quan-Sheng, LIU Bai-Feng, LI Yu-Rong, SHI Zhong-Zhi. Variance Estimation for Linear Mean Square Consensus Problem. ACTA AUTOMATICA SINICA, 2017, 43(4): 568-575. doi: 10.16383/j.aas.2017.c160064
Citation: DOU Quan-Sheng, LIU Bai-Feng, LI Yu-Rong, SHI Zhong-Zhi. Variance Estimation for Linear Mean Square Consensus Problem. ACTA AUTOMATICA SINICA, 2017, 43(4): 568-575. doi: 10.16383/j.aas.2017.c160064

线性均方一致性问题的偏差估计

doi: 10.16383/j.aas.2017.c160064
基金项目: 

国家自然科学基金 61035003

国家自然科学基金 61202212

国家自然科学基金 61175053

国家自然科学基金 61173173

国家重点基础研究发展计划(973计划) 2013CB329502

国家自然科学基金 71471103

国家自然科学基金 61272244

详细信息
    作者简介:

    刘柏枫 博士, 山东工商学院数学与信息科学学院副教授.主要研究方向为随机过程, 微分方程动力系统.E-mail:lbfg@sohu.com

    厉玉蓉 博士, 山东工商学院计算机与技术学院教授.主要研究方向为计算机代数, 计算机图形学.E-mail:lyry@263.net

    史忠植 中国科学院计算技术研究所研究员.主要研究方向为智能科学理论与方法, 知识工程, 神经计算, 数据挖掘, 机器学习.E-mail:shizz@ics.ict.ac.cn

    通讯作者:

    窦全胜 博士, 山东工商学院计算机与技术学院教授.主要研究方向为智能科学理论与方法, 数据挖掘, 多主体技术, 群体智能.E-mail:lidou@163.com

Variance Estimation for Linear Mean Square Consensus Problem

Funds: 

National Natural Science Foundation of China 61035003

National Natural Science Foundation of China 61202212

National Natural Science Foundation of China 61175053

National Natural Science Foundation of China 61173173

National Basic Research Program of China (973 Program) 2013CB329502

National Natural Science Foundation of China 71471103

National Natural Science Foundation of China 61272244

More Information
    Author Bio:

    Ph. D., associate professor at the College of Mathematic and Information Science, Shandong Inresearch interest covers stochastic process and differential equation dynamic system

     Ph. D., professor at the School of Computer Science and Technology, Shandong Institute of Business and Technology. Her research interest covers computer algebra and computer graphics

    Professor at the Institute of Computing Technology, Chinese Academy of Sciences. His research interest covers intelligent scientific theory and method, knowledge engineering, neural computing, data mining, and machine learning

    Corresponding author: DOU Quan-Sheng Ph. D., professor at the School of Computer Science and Technology, Shandong Institute of Business and Technology. His research interest covers intelligent scientific theory and method, data mining, multi-agent technology, and swarm intelligence. Corresponding author of this paper
  • 摘要: 多智能体协同在传感网、社交网、分布式控制等诸多领域有着广泛的实际应用背景,一致性问题作为多智能体协同的基础,受到越来越多研究者的关注.在实际环境中,由于设备、通信干扰等诸多原因,信息在传递过程中通常会携有噪声,本文对噪声条件下一致性问题的系统偏差进行了研究,将求解一致性协议噪声偏差问题转化成矩阵范数的积分问题,根据矩阵迹与特征值的关系,利用范数不等式及积分中值定理,给出仅与增益函数和网络结构相关的一致性协议噪声偏差上界,为一致性系统在实际应用中的噪声估计奠定了理论基础.
    1)  本文责任编委 吕金虎
  • 图  1  四种Agent网络结构示意图

    Fig.  1  Diagram of four different network structures of Agent

    图  2  有两个邻居时Agent的结构

    Fig.  2  Structure of Agent with two neighbors

    图  3  $Z(t)$ 理论上界与统计结果对比

    Fig.  3  The Comparison of theoretical upper bound and statistical results of $Z(t)$

    表  1  Lstar所有非零特征值

    Table  1  All nonzero eigenvalues of Lstar

    λi (Lstar)
    i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8
    1.00 1.00 1.00 1.00 1.00 1.00 8.00
    下载: 导出CSV

    表  2  Lpath所有非零特征值

    Table  2  All nonzero eigenvalues of Lpath

    λi (Lpath)
    i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8
    0.152 0.586 1.235 2.000 2.765 3.414 3.848
    下载: 导出CSV

    表  3  Lcircle所有非零特征值

    Table  3  All nonzero eigenvalues of Lcircle

    λi (Lcircle)
    i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8
    0.586 0.586 2.000 2.000 3.414 3.414 4.000
    下载: 导出CSV

    表  4  Lcircle_N4所有非零特征值

    Table  4  All nonzero eigenvalues of Lcircle_N4

    λi (Lcircle_N4)
    i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8
    2.586 2.586 4.000 5.414 5.414 6.000 6.000
    下载: 导出CSV

    表  5  Z(t) 理论上界与统计值的数据对比

    Table  5  The detailed comparison of theoretical upper bound and statistical results of Z(t)

    网络结构 Star Path Circle Circle_N4
    Z(t)理论上界 42.875 73.512 41.999 27.619
    Z(t)统计值 33.856 59.689 30.518 22.335
    下载: 导出CSV
  • [1] Reynolds C W. Flocks, herds and schools:a distributed behavioral model. In:Proceedings of the 14th Annual Conference on Computer Graphics and Interactive Techniques. New York, USA:ACM, 1987. 25-34
    [2] Vicsek T, Czirók A, Ben-Jacob E, Cohen I, Shochet O. Novel type of phase transition in a system of self-driven particles. Physical Review Letters, 1995, 75(6):1226-1229 doi: 10.1103/PhysRevLett.75.1226
    [3] Jadbabaie A, Lin J, Morse A S. Coordination of groups of mobile autonomous agents using nearest neighbor rules. IEEE Transactions on Automatic Control, 2003, 48(6):988-1001 doi: 10.1109/TAC.2003.812781
    [4] Olfati-Saber R, Fax J A, Murray R M. Consensus and cooperation in networked multi-agent systems. Proceedings of the IEEE, 2007, 95(1):215-233 doi: 10.1109/JPROC.2006.887293
    [5] Olfati-Saber R. Evolutionary dynamics of behavior in social networks. In:Proceedings of the 46th IEEE Conference on Decision and Control. New Orleans, LA, USA:IEEE, 2007. 4051-4056
    [6] Olfati-Saber R, Jalalkamali P. Coupled distributed estimation and control for mobile sensor networks. IEEE Transactions on Automatic Control, 2012, 57(10):2609-2614 doi: 10.1109/TAC.2012.2190184
    [7] Olfati-Saber R. Flocking for multi-agent dynamic systems:algorithms and theory. IEEE Transactions on Automatic Control, 2006, 51(3):401-420 doi: 10.1109/TAC.2005.864190
    [8] Yu C H. Biologically-Inspired Control for Self-Adaptive Multiagent Systems[Ph.D. dissertation], Harvard University, USA, 2010.
    [9] Yu C H, Nagpal R. Biologically-inspired control for multi-agent self-adaptive tasks. In:Proceedings of the 24th AAAI Conference on Artificial Intelligence. Atlanta, USA:AAAI, 2010. 1702-1707
    [10] Yu C H, Nagpal R. A self-adaptive framework for modular robots in a dynamic environment:theory and applications. The International Journal of Robotics Research, 2011, 30(8):1015-1036 doi: 10.1177/0278364910384753
    [11] Li Z K, Duan Z S, Chen G R, Huang L. Consensus of multiagent systems and synchronization of complex networks:a unified viewpoint. IEEE Transactions on Circuits and Systems Ⅰ:Regular Papers, 2010, 57(1):213-224 doi: 10.1109/TCSI.2009.2023937
    [12] Li Z, Duan Z, Chen G. Dynamic consensus of linear multi-agent systems. IET Control Theory and Applications, 2011, 5(1):19-28 doi: 10.1049/iet-cta.2009.0466
    [13] Li Z K, Liu X D, Ren W, Xie L H. Distributed tracking control for linear multiagent systems with a leader of bounded unknown input. IEEE Transactions on Automatic Control, 2013, 58(2):518-523 doi: 10.1109/TAC.2012.2208295
    [14] Wen G H, Duan Z S, Li Z K, Chen G R. Consensus and its L2-gain performance of multi-agent systems with intermittent information transmissions. International Journal of Control, 2012, 85(4):384-396 doi: 10.1080/00207179.2011.654264
    [15] Wen G H, Duan Z S, Li Z K, Chen G R. Flocking of multi-agent dynamical systems with intermittent nonlinear velocity measurements. International Journal of Robust and Nonlinear Control, 2012, 22(16):1790-1805 doi: 10.1002/rnc.v22.16
    [16] Tran T M D, Kibangou A. Distributed design of finite-time average consensus protocols. In:Proceedings of the 4th IFAC Workshop on Distributed Estimation and Control in Networked Systems. Rhine Moselle Hall, Koblenz, Germany:IFAC, 2013. 227-233
    [17] Huang M Y, Manton J H. Coordination and consensus of networked agents with noisy measurements:stochastic algorithms and asymptotic behavior. SIAM Journal on Control and Optimization, 2009, 48(1):134-161 doi: 10.1137/06067359X
    [18] Huang M Y, Manton J H. Stochastic consensus seeking with noisy and directed inter-agent communication:fixed and randomly varying topologies. IEEE Transactions on Automatic Control, 2010, 55(1):235-241 doi: 10.1109/TAC.2009.2036291
    [19] Liu S, Xie L H, Zhang H S. Distributed consensus for multi-agent systems with delays and noises in transmission channels. Automatica, 2011, 47(5):920-934 doi: 10.1016/j.automatica.2011.02.003
    [20] 窦全胜, 丛玲, 姜平, 史忠植.离散线性一致性算法噪声问题研究.自动化学报, 2015, 41(7):1328-1340 http://www.aas.net.cn/CN/abstract/abstract18706.shtml

    Dou Quan-Sheng, Cong Ling, Jiang Ping, Shi Zhong-Zhi. Research on discrete linear consensus algorithm with noises. Acta Automatica Sinica, 2015, 41(7):1328-1340 http://www.aas.net.cn/CN/abstract/abstract18706.shtml
    [21] Garin F, Schenato L. A survey on distributed estimation and control applications using linear consensus algorithms. Networked Control Systems. London:Springer, 2010. 75-107
    [22] 闵海波, 刘源, 王仕成, 孙富春.多个体协调控制问题综述.自动化学报, 2012, 38(10):1557-1570 http://www.aas.net.cn/CN/abstract/abstract17765.shtml

    Min Hai-Bo, Liu Yuan, Wang Shi-Cheng, Sun Fu-Chun. An overview on coordination control problem of multi-agent system. Acta Automatica Sinica, 2012, 38(10):1557-1570 http://www.aas.net.cn/CN/abstract/abstract17765.shtml
    [23] Young G F, Scardovi L, Leonard N E. Robustness of noisy consensus dynamics with directed communication. In:Proceedings of the 2010 American Control Conference. Baltimore, MD, USA:IEEE, 2010. 6312-6317
  • 加载中
图(3) / 表(5)
计量
  • 文章访问数:  1897
  • HTML全文浏览量:  200
  • PDF下载量:  999
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-01-22
  • 录用日期:  2016-05-16
  • 刊出日期:  2017-04-20

目录

    /

    返回文章
    返回