2.765

2022影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于数据驱动的微小故障诊断方法综述

文成林 吕菲亚 包哲静 刘妹琴

文成林, 吕菲亚, 包哲静, 刘妹琴. 基于数据驱动的微小故障诊断方法综述. 自动化学报, 2016, 42(9): 1285-1299. doi: 10.16383/j.aas.2016.c160105
引用本文: 文成林, 吕菲亚, 包哲静, 刘妹琴. 基于数据驱动的微小故障诊断方法综述. 自动化学报, 2016, 42(9): 1285-1299. doi: 10.16383/j.aas.2016.c160105
WEN Cheng-Lin, LV Fei-Ya, BAO Zhe-Jing, LIU Mei-Qin. A Review of Data Driven-based Incipient Fault Diagnosis. ACTA AUTOMATICA SINICA, 2016, 42(9): 1285-1299. doi: 10.16383/j.aas.2016.c160105
Citation: WEN Cheng-Lin, LV Fei-Ya, BAO Zhe-Jing, LIU Mei-Qin. A Review of Data Driven-based Incipient Fault Diagnosis. ACTA AUTOMATICA SINICA, 2016, 42(9): 1285-1299. doi: 10.16383/j.aas.2016.c160105

基于数据驱动的微小故障诊断方法综述

doi: 10.16383/j.aas.2016.c160105
基金项目: 

国家自然科学基金 61273170

浙江省自然科学基金 LZ15F030001

国家自然科学基金 U1509203

国家自然科学基金 61490701

国家自然科学基金 61333005

详细信息
    作者简介:

    吕菲亚 浙江大学电气工程学院博士研究生.主要研究方向为故障诊断,智能控制,大数据分析.E-mail:lvfeiya0215@126.com

    包哲静 浙江大学电气工程学院副教授.主要研究方向为智能控制,故障诊断,大数据分析和微电网规划.E-mail:zjbao@zju.edu.cn

    刘妹琴 浙江大学电气工程学院教授.主要研究方向为鲁棒控制,多传感器网络,信息融合.E-mail:liumeiqin@zju.edu.cn

    通讯作者:

    文成林 杭州电子科技大学自动化学院教授.主要研究方向为信息融合,多目标跟踪,故障诊断.本文通信作者.E-mail:wencl@hdu.edu.cn

A Review of Data Driven-based Incipient Fault Diagnosis

Funds: 

National Natural Science Foundation of China 61273170

Zhejiang Provincial Natural Science Foundation of China LZ15F030001

National Natural Science Foundation of China U1509203

National Natural Science Foundation of China 61490701

National Natural Science Foundation of China 61333005

More Information
    Author Bio:

    Ph.D. candidate at the College of Electrical Engineering, Zhejiang University. Her research interest covers fault diagnosis, intelligent control, and big data analysis.

    Associate professor at the College of Electrical Engineering, Zhejiang University. Her research interest covers intelligent control, fault diagnosis, big data analysis, and planning of microgrid.

    Professor at the College of Electrical Engineering, Zhejiang University. Her research interest covers robust control, multi-sensor networks, and information fusion.

    Corresponding author: WEN Cheng-Lin Professor at the School of Automation, Hangzhou Dianzi University. His research interest covers information fusion, multi-target tracking, and fault diagnosis. Corresponding author of this paper.
  • 摘要: 能否及时诊断出微小故障是保障系统安全运行并抑制故障恶化的关键,本文针对微小故障幅值低、易被系统扰动和噪声掩盖等特点,从数据驱动的角度对现有研究进行综述.并将其分为三大类: 基于统计分析的微小故障诊断技术、基于信号处理的微小故障诊断技术和基于人工智能的微小故障诊断技术,进而对不同方法的基本研究思想、研究进展、应用以及局限性予以介绍.最后不仅指出复杂系统微小故障诊断研究中的现存问题,而且从增加新的信息、挖掘未利用的隐含信息和采用新的数学工具三个角度进行展望,提出基于关联性分析、基于多源信息融合、基于机器学习和基于时频分析四个值得探究的微小故障诊断思想.
  • 图  1  基于数据驱动的微小故障诊断方法分类

    Fig.  1  The classification of data-driven based incipient fault diagnosis

  • [1] Himmelblau D M. Fault Detection and Diagnosis in Chemical and Petrochemical Processes. New York: Elsevier, 1978.
    [2] Ren L, Xu Z Y, Yan X Q. Single-sensor incipient fault detection. IEEE Sensors Journal, 2011, 11(9): 2102-2107 doi: 10.1109/JSEN.2010.2093879
    [3] Amar M, Gondal I, Wilson C. Vibration spectrum imaging: a novel bearing fault classification approach. IEEE Transactions on Industrial Electronics, 2015, 62(1): 494-502 doi: 10.1109/TIE.2014.2327555
    [4] Li B, Chow M Y, Tipsuwan Y, Hung J C. Neural-network-based motor rolling bearing fault diagnosis. IEEE Transactions on Industrial Electronics, 2000, 47(5): 1060-1069 doi: 10.1109/41.873214
    [5] Demetriou M A, Polycarpou M M. Incipient fault diagnosis of dynamical systems using online approximators. IEEE Transactions on Automatic Control, 1998, 43(11): 1612-1617 doi: 10.1109/9.728881
    [6] Naderi M S, Gharehpetian G B, Abedi M, Blackburn T R. Modeling and detection of transformer internal incipient fault during impulse test. IEEE Transactions on Dielectrics and Electrical Insulation, 2008, 15(1): 284-291 doi: 10.1109/T-DEI.2008.4446762
    [7] Oda T, Katoh E. Fault Diagnosis Expert System, U.S. Patent 5127005, June 1992.
    [8] Yan R Q, Gao R X, Chen X F. Wavelets for fault diagnosis of rotary machines: a review with applications. Signal Processing, 2014, 96: 1-15 doi: 10.1016/j.sigpro.2013.04.015
    [9] Chiang L H, Russell E L, Braatz R D. Fault diagnosis in chemical processes using Fisher discriminant analysis, discriminant partial least squares, and principal component analysis. Chemometrics and Intelligent Laboratory Systems, 2000, 50(2): 243-252 doi: 10.1016/S0169-7439(99)00061-1
    [10] Yoon S, MacGregor J F. Fault diagnosis with multivariate statistical models, part I: using steady state fault signatures. Journal of Process Control, 2001, 11(4): 387-400 doi: 10.1016/S0959-1524(00)00008-1
    [11] Wong P K, Yang Z X, Vong C M, Zhong J H. Real-time fault diagnosis for gas turbine generator systems using extreme learning machine. Neurocomputing, 2014, 128: 249-257 doi: 10.1016/j.neucom.2013.03.059
    [12] Li K, Zhang Y L, Li Z X. Application research of Kalman filter and SVM applied to condition monitoring and fault diagnosis. Applied Mechanics and Materials, 2012, 121-126: 268-272 http://cn.bing.com/academic/profile?id=2015215546&encoded=0&v=paper_preview&mkt=zh-cn
    [13] 李娟, 周东华, 司小胜, 陈茂银, 徐春红. 微小故障诊断方法综述. 控制理论与应用, 2012, 29(12): 1517-1529 http://www.cnki.com.cn/Article/CJFDTOTAL-KZLY201212000.htm

    Li Juan, Zhou Dong-Hua, Si Xiao-Sheng, Chen Mao-Yin, Xu Chun-Hong. Review of incipient fault diagnosis methods. Control Theory and Applications, 2012, 29(12): 1517-1529 http://www.cnki.com.cn/Article/CJFDTOTAL-KZLY201212000.htm
    [14] Ren W, Beard R W. Consensus algorithms for double-integrator dynamics. Distributed Consensus in Multi-vehicle Cooperative Control: Theory and Application. London: Springer, 2008. 77-104
    [15] Venkatasubramanian V, Rengaswamy R, Yin K, Kavuri S N. A review of process fault detection and diagnosis: Part I: quantitative model-based methods. Computers and Chemical Engineering, 2003, 27(3): 293-311 doi: 10.1016/S0098-1354(02)00160-6
    [16] 李晗, 萧德云. 基于数据驱动的故障诊断方法综述. 控制与决策, 2011, 26(1): 1-9 http://www.cnki.com.cn/Article/CJFDTOTAL-KZYC201101002.htm

    Li Han, Xiao De-Yun. Survey on data driven fault diagnosis methods. Control and Decision, 2011, 26(1): 1-9 http://www.cnki.com.cn/Article/CJFDTOTAL-KZYC201101002.htm
    [17] Pearson K. Principal components analysis. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1901, 6(2): 559
    [18] Bartlett M S. Multivariate analysis. Supplement to the Journal of the Royal Statistical Society, 1947, 9(2): 176-197 doi: 10.2307/2984113
    [19] Wiesel A, Hero A O. Decomposable principal component analysis. IEEE Transactions on Signal Processing, 2009, 57(11): 4369-4377 doi: 10.1109/TSP.2009.2025806
    [20] Wise B M, Ricker N L, Veltkamp D F, Kowalski B R. A theoretical basis for the use of principal component models for monitoring multivariate processes. Process Control and Quality, 1990, 1(1): 41-51 http://cn.bing.com/academic/profile?id=99506905&encoded=0&v=paper_preview&mkt=zh-cn
    [21] Kaistha N, Upadhyaya B R. Incipient fault detection and isolation in a PWR plant using principal component analysis. In: Proceedings of the 2001 American Control Conference. Arlington, VA, USA: IEEE, 2001. 2119-2120
    [22] Zhao J S, Huang J C, Sun W. On-line early fault detection and diagnosis of municipal solid waste incinerators. Waste Management, 2008, 28(11): 2406-2414 doi: 10.1016/j.wasman.2007.11.014
    [23] 葛志强, 杨春节, 宋执环. 基于MEWMA-PCA的微小故障检测方法研究及其应用. 信息与控制, 2007, 36(5): 650-656

    Ge Zhi-Qiang, Yang Chun-Jie, Song Zhi-Huan. Research and application of small shifts detection method based on MEWMA-PCA. Information and Control, 2007, 36(5): 650-656
    [24] 文成林, 胡静, 王天真, 陈志国. 相对主元分析及其在数据压缩和故障诊断中的应用研究. 自动化学报, 2008, 34(9): 1128-1139 http://www.aas.net.cn/CN/abstract/abstract17975.shtml

    Wen Cheng-Lin, Hu Jing, Wang Tian-Zhen, Chen Zhi-Guo. Relative PCA with applications of data compression and fault diagnosis. Acta Automatica Sinica, 2008, 34(9): 1128-1139 http://www.aas.net.cn/CN/abstract/abstract17975.shtml
    [25] Zhou F N, Tang T H, Wen C L. DCA based multi-level small fault diagnosis. In: Proceedings of the 11th IEEE International Conference on Communication Technology. Hangzhou, China: IEEE, 2008. 486-489
    [26] Harmouche J, Delpha C, Diallo D. Incipient fault detection and diagnosis based on Kullback-Leibler divergence using principal component analysis: Part I. Signal Processing, 2014, 94: 278-287 doi: 10.1016/j.sigpro.2013.05.018
    [27] Harmouche J, Delpha C, Diallo D. Incipient fault detection and diagnosis based on Kullback-Leibler divergence using principal component analysis: Part II. Signal Processing, 2015, 109: 334-344 doi: 10.1016/j.sigpro.2014.06.023
    [28] Comon P. Independent component analysis. Higher-Order Statistics. Amsterdam: Elsevier, 1992. 29-38
    [29] Kano M, Tanaka S, Hasebe S, Hashimoto I, Ohno H. Monitoring independent components for fault detection. AIChE Journal, 2003, 49(4): 969-976 doi: 10.1002/(ISSN)1547-5905
    [30] Ge Z Q, Song Z H. Process monitoring based on independent component analysis——principal component analysis (ICA-PCA) and similarity factors. Industrial and Engineering Chemistry Research, 2007, 46(7): 2054-2063 doi: 10.1021/ie061083g
    [31] Tian X H, Lin J, Fyfe K R, Zuo M J. Gearbox fault diagnosis using independent component analysis in the frequency domain and wavelet filtering. In: Proceedings of the 2003 IEEE International Conference on Acoustics, Speech, and Signal Processing. Hong Kong, China: IEEE, 2003. II-245-II-248
    [32] He Q B, Du R X, Kong F R. Phase space feature based on independent component analysis for machine health diagnosis. Journal of Vibration and Acoustics, 2012, 134(2): 021014 doi: 10.1115/1.4005006
    [33] Ge Z Q, Xie L, Kruger U, Song Z H. Local ICA for multivariate statistical fault diagnosis in systems with unknown signal and error distributions. AIChE Journal, 2012, 58(8): 2357-2372 doi: 10.1002/aic.12760
    [34] Guo Y, Wu X, Na J, Fung R F. Incipient faults identification in gearbox by combining Kurtogram and independent component analysis. Applied Mechanics and Materials, 2015, 764-765: 309-313 doi: 10.4028/www.scientific.net/AMM.764-765
    [35] Abdi H. Partial least square regression. Encyclopedia for Research Methods for the Social Sciences. Thousand Oaks: Sage, 2003. 792-795
    [36] Kresta J V, Macgregor J F, Marlin T E. Multivariate statistical monitoring of process operating performance. Canadian Journal of Chemical Engineering, 1991, 69(1): 35-47 doi: 10.1002/cjce.v69:1
    [37] Vigneau E, Bertrand D, Qannari E M. Application of latent root regression for calibration in near-infrared spectroscopy. Comparison with principal component regression and partial least squares. Chemometrics and Intelligent Laboratory Systems, 1996, 35(2): 231-238 doi: 10.1016/S0169-7439(96)00051-2
    [38] Komulainen T, Sourander M, Jämsä-Jounela S L. An online application of dynamic PLS to a dearomatization process. Computers and Chemical Engineering, 2004, 28(12): 2611-2619 doi: 10.1016/j.compchemeng.2004.07.014
    [39] Qin S J, Zheng Y Y. Quality-relevant and process-relevant fault monitoring with concurrent projection to latent structures. AIChE Journal, 2013, 59(2): 496-504 doi: 10.1002/aic.v59.2
    [40] Kruger U, Dimitriadis G. Diagnosis of process faults in chemical systems using a local partial least squares approach. AIChE Journal, 2008, 54(10): 2581-2596 doi: 10.1002/aic.v54:10
    [41] Zhang X D, Polycarpou M M, Parisini T. Fault diagnosis of a class of nonlinear uncertain systems with Lipschitz nonlinearities using adaptive estimation. Automatica, 2010, 46(2): 290-299 doi: 10.1016/j.automatica.2009.11.014
    [42] Harmouche J, Delpha C, Diallo D. Incipient fault amplitude estimation using KL divergence with a probabilistic approach. Signal Processing, 2016, 120: 1-7 doi: 10.1016/j.sigpro.2015.08.008
    [43] Lee D D, Seung H S. Learning the parts of objects by non-negative matrix factorization. Nature, 1999, 401(6755): 788-791 doi: 10.1038/44565
    [44] Hoyer P O. Non-negative sparse coding. In: Proceedings of the 12th IEEE Workshop on Neural Networks for Signal Processing. Martigny, Switzerland: IEEE, 2002. 557-565
    [45] Tangirala A K, Kanodia J, Shah S L. Non-negative matrix factorization for detection and diagnosis of plantwide oscillations. Industrial and Engineering Chemistry Research, 2007, 46(3): 801-817 doi: 10.1021/ie0602299
    [46] Wang Q H, Zhang Y Y, Cai L, Zhu Y S. Fault diagnosis for diesel valve trains based on non-negative matrix factorization and neural network ensemble. Mechanical Systems and Signal Processing, 2009, 23(5): 1683-1695 doi: 10.1016/j.ymssp.2008.12.004
    [47] Li B, Zhang P L, Liu D S, Mi S S, Ren G Q, Tian H. Feature extraction for rolling element bearing fault diagnosis utilizing generalized S transform and two-dimensional non-negative matrix factorization. Journal of Sound and Vibration, 2011, 330(10): 2388-2399 doi: 10.1016/j.jsv.2010.11.019
    [48] Kirchgässner G, Wolters J. Introduction to Modern Time Series Analysis. Berlin Heidelberg: Springer, 2007. 2-5
    [49] Cong F Y, Chen J, Dong G M, Zhao F G. Short-time matrix series based singular value decomposition for rolling bearing fault diagnosis. Mechanical Systems and Signal Processing, 2013, 34(1-2): 218-230 doi: 10.1016/j.ymssp.2012.06.005
    [50] Menon S, Uluyol Ö, Kim K, Nwadiogbu E O. Incipient fault detection and diagnosis in turbine engines using hidden Markov models. In: Proceedings of the 2003 ASME Turbo Expo, Collocated with the 2003 International Joint Power Generation Conference. Arlington, Georgia, USA: ASME, 2003. 493-500
    [51] Purushotham V, Narayanan S, Prasad S A N. Multi-fault diagnosis of rolling bearing elements using wavelet analysis and hidden Markov model based fault recognition. NDT and E International, 2005, 38(8): 654-664 doi: 10.1016/j.ndteint.2005.04.003
    [52] Li Z F, Fang H J, Xia L S. Increasing mapping based hidden Markov model for dynamic process monitoring and diagnosis. Expert Systems with Applications, 2014, 41(2): 744-751 doi: 10.1016/j.eswa.2013.07.098
    [53] Bhatnagar S, Rajagopalan V, Ray A. Incipient fault detection in mechanical power transmission systems. In: Proceedings of the 2005 American Control Conference. Portland, OR: IEEE, 2005. 472-477
    [54] D'Angelo M F S V, Palhares R M, Takahashi R H C, Loschi R H, Baccarini L M R, Caminhas W M. Incipient fault detection in induction machine stator-winding using a fuzzy-Bayesian change point detection approach. Applied Soft Computing, 2011, 11(1): 179-192 doi: 10.1016/j.asoc.2009.11.008
    [55] Barman D, Sarkar S, Das G, Das S, Purkait P. DFA and DWT based severity detection and discrimination of induction motor stator winding short circuit fault from incipient insulation failure. In: Proceedings of the 2015 International Conference on Electrical, Electronics, Signals, Communication, and Optimization. Visakhapatnam: IEEE, 2015. 1-6
    [56] Liu H C, Liu L, Bian Q H, Lin Q L, Dong N, Xu P C. Failure mode and effects analysis using fuzzy evidential reasoning approach and grey theory. Expert Systems with Applications, 2011, 38(4): 4403-4415 doi: 10.1016/j.eswa.2010.09.110
    [57] Wang M H. Grey-extension method for incipient fault forecasting of oil-immersed power transformer. Electric Power Components and Systems, 2004, 32(10): 959-975 doi: 10.1080/15325000490257999
    [58] Lin C H, Chen J L, Huang P Z. Dissolved gases forecast to enhance oil-immersed transformer fault diagnosis with grey prediction-clustering analysis. Expert Systems, 2011, 28(2): 123-137 doi: 10.1111/exsy.2011.28.issue-2
    [59] Wang M H, Tsai H H. Fuel cell fault forecasting system using grey and extension theories. IET Renewable Power Generation, 2012, 6(6): 373-380 doi: 10.1049/iet-rpg.2012.0147
    [60] Qiao W, Lu D G. A survey on wind turbine condition monitoring and fault diagnosis——part II: signals and signal processing methods. IEEE Transactions on Industrial Electronics, 2015, 62(10): 6546-6557 doi: 10.1109/TIE.2015.2422394
    [61] Daubechies I. Ten Lectures on Wavelets. Philadelphia: Society for Industrial and Applied Mathematics, 1992.
    [62] Rubini R, Meneghetti U. Application of the envelope and wavelet transform analyses for the diagnosis of incipient faults in ball bearings. Mechanical Systems and Signal Processing, 2001, 15(2): 287-302 doi: 10.1006/mssp.2000.1330
    [63] Saravanan N, Ramachandran K I. Incipient gear box fault diagnosis using discrete wavelet transform (DWT) for feature extraction and classification using artificial neural network (ANN). Expert Systems with Applications, 2010, 37(6): 4168-4181 doi: 10.1016/j.eswa.2009.11.006
    [64] Sun W, Yang G A, Chen Q, Palazoglu A, Feng K. Fault diagnosis of rolling bearing based on wavelet transform and envelope spectrum correlation. Journal of Vibration and Control, 2013, 19(6): 924-941 doi: 10.1177/1077546311435348
    [65] 罗荣, 田福庆, 李克玉, 丁庆喜. 卷积型小波变换实现及机械早期故障诊断应用. 振动与冲击, 2013, 32(7): 64-69 http://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201307015.htm

    Luo Rong, Tian Fu-Qing, Li Ke-Yu, Ding Qing-Xi. Realization of convolution wavelet transformation and its application in mechanical incipient fault diagnosis. Journal of Vibration and Shock, 2013, 32(7): 64-69 http://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201307015.htm
    [66] Sugumaran V, Rao A V, Ramachandran K I. A comprehensive study of fault diagnostics of roller bearings using continuous wavelet transform. International Journal of Manufacturing Systems and Design, 2015, 1(1): 27-46
    [67] Kay S M, Marple S L Jr. Spectrum analysis——a modern perspective. Proceedings of the IEEE, 1981, 69(11): 1380-1419 doi: 10.1109/PROC.1981.12184
    [68] Feng Z P, Chen X W, Liang M. Joint envelope and frequency order spectrum analysis based on iterative generalized demodulation for planetary gearbox fault diagnosis under nonstationary conditions. Mechanical Systems and Signal Processing, 2016, 76-77: 242-264 doi: 10.1016/j.ymssp.2016.02.047
    [69] Drago R J. Incipient failure detection. Power Transmission Design, 1979, 21(2): 40-45 http://cn.bing.com/academic/profile?id=776794878&encoded=0&v=paper_preview&mkt=zh-cn
    [70] Nandi S, Toliyat H A, Li X. Condition monitoring and fault diagnosis of electrical motors——a review. IEEE Transactions on Energy Conversion, 2005, 20(4): 719-729 doi: 10.1109/TEC.2005.847955
    [71] Oh J E, Kim W T, Sim H J, Lee J Y. Advanced multidimensional spectral analysis and its application for early fault detection. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2006, 220(4): 435-444 doi: 10.1243/09544070JAUTO25
    [72] Muruganatham B, Sanjith M A, Krishnakumar B, Satya Murty S A V. Roller element bearing fault diagnosis using singular spectrum analysis. Mechanical Systems and Signal Processing, 2013, 35(1-2): 150-166 doi: 10.1016/j.ymssp.2012.08.019
    [73] Xie S L, Zhang Y H, Xie Q, Chen C H, Zhang X N. Identification of high frequency loads using statistical energy analysis method. Mechanical Systems and Signal Processing, 2013, 35(1-2): 291-306 doi: 10.1016/j.ymssp.2012.08.028
    [74] Elsner J B, Tsonis A A. Singular Spectrum Analysis: A New Tool in Time Series Analysis. New York: Springer Science & Business Media, 1996.
    [75] Huang N E, Shen Z, Long S R, Wu M C, Shi H H, Zheng Q A, Yen N C, Tung C C, Liu H H. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 1998, 454(1971): 903-995 doi: 10.1098/rspa.1998.0193
    [76] Flandrin P, Rilling G, Goncalves P. Empirical mode decomposition as a filter bank. IEEE Signal Processing Letters, 2004, 11(2): 112-114 doi: 10.1109/LSP.2003.821662
    [77] Elbouchikhi E, Choqueuse V, Trachi Y, Benbouzid M. Induction machine bearing faults detection based on Hilbert-Huang transform. In: Proceedings of the 24th IEEE International Symposium on Industrial Electronics. Buzios: IEEE, 2015. 843-848
    [78] Liang J, Yang Z X. A novel wavelet transform——empirical mode decomposition based sample entropy and SVD approach for acoustic signal fault diagnosis. In: Proceedings of the 6th International Conference on Advances in Swarm and Computational Intelligence. Beijing, China: Springer International Publishing, 2015. 232-241
    [79] Yan J H, Lu L. Improved Hilbert-Huang transform based weak signal detection methodology and its application on incipient fault diagnosis and ECG signal analysis. Signal Processing, 2014, 98: 74-87 doi: 10.1016/j.sigpro.2013.11.012
    [80] Lei Y G, Lin J, He Z J, Zuo M J. A review on empirical mode decomposition in fault diagnosis of rotating machinery. Mechanical Systems and Signal Processing, 2013, 35(1-2): 108-126 doi: 10.1016/j.ymssp.2012.09.015
    [81] Giardina C R, Dougherty E R. Morphological Methods in Image and Signal Processing. Englewood Cliffs: Prentice Hall, 1988.
    [82] Zhang L J, Xu J W, Yang J H, Yang D B, Wang D D. Multiscale morphology analysis and its application to fault diagnosis. Mechanical Systems and Signal Processing, 2008, 22(3): 597-610 doi: 10.1016/j.ymssp.2007.09.010
    [83] He W, Jiang Z N, Qin Q. A joint adaptive wavelet filter and morphological signal processing method for weak mechanical impulse extraction. Journal of Mechanical Science and Technology, 2010, 24(8): 1709-1716 doi: 10.1007/s12206-010-0511-4
    [84] Dong Y B, Liao M F, Zhang X L, Wang F Z. Faults diagnosis of rolling element bearings based on modified morphological method. Mechanical Systems and Signal Processing, 2011, 25(4): 1276-1286 doi: 10.1016/j.ymssp.2010.10.008
    [85] Li B, Zhang P L, Wang Z J, Mi S S, Zhang Y T. Gear fault detection using multi-scale morphological filters. Measurement, 2011, 44(10): 2078-2089 doi: 10.1016/j.measurement.2011.08.010
    [86] Li B, Zhang P L, Wang Z J, Mi S S, Liu D S. A weighted multi-scale morphological gradient filter for rolling element bearing fault detection. ISA Transactions, 2011, 50(4): 599-608 doi: 10.1016/j.isatra.2011.06.003
    [87] McCulloch W S, Pitts W. A logical calculus of the ideas immanent in nervous activity. The Bulletin of Mathematical Biophysics, 1943, 5(4): 115-133 doi: 10.1007/BF02478259
    [88] Watanabe K, Matsuura I, Abe M, Kubota M, Himmelblau D M. Incipient fault diagnosis of chemical processes via artificial neural networks. AIChE Journal, 1989, 35(11): 1803-1812 doi: 10.1002/(ISSN)1547-5905
    [89] Chow M Y, Mangum P, Thomas R J. Incipient fault detection in DC machines using a neural network. In: Proceedings of the 22nd Asilomar Conference on Signals, Systems, and Computers. Pacific Grove, CA: IEEE, 1988. 706-709
    [90] Zakaria F, Johari D, Musirin I. Artificial neural network (ANN) application in dissolved gas analysis (DGA) methods for the detection of incipient faults in oil-filled power transformer. In: Proceedings of the 2012 IEEE International Conference on Control System, Computing, and Engineering. Penang, Malaysia: IEEE, 2012. 328-332
    [91] Bhalla D, Bansal R K, Gupta H O. Function analysis based rule extraction from artificial neural networks for transformer incipient fault diagnosis. International Journal of Electrical Power and Energy Systems, 2012, 43(1): 1196-1203 doi: 10.1016/j.ijepes.2012.06.042
    [92] Bhowmik P S, Pradhan S, Prakash M, Roy S. Investigation of wavelets and radial basis function neural network for incipient fault diagnosis in induction motors. In: Proceedings of the 2013 International Conference on Circuits, Controls, and Communications. Bengaluru: IEEE, 2013. 1-5
    [93] Zhang Z Y, Wang Y, Wang K S. Fault diagnosis and prognosis using wavelet packet decomposition, Fourier transform and artificial neural network. Journal of Intelligent Manufacturing, 2013, 24(6): 1213-1227 doi: 10.1007/s10845-012-0657-2
    [94] Hornik K, Stinchcombe M, White H. Multilayer feed forward networks are universal approximators. Neural Networks, 1989, 2(5): 359-366 doi: 10.1016/0893-6080(89)90020-8
    [95] Cortes C, Vapnik V. Support-vector networks. Machine Learning, 1995, 20(3): 273-297
    [96] Widodo A, Yang B S. Support vector machine in machine condition monitoring and fault diagnosis. Mechanical Systems and Signal Processing, 2007, 21(6): 2560-2574 doi: 10.1016/j.ymssp.2006.12.007
    [97] Wei C H, Tang W H, Wu Q H. A hybrid least-square support vector machine approach to incipient fault detection for oil-immersed power transformer. Electric Power Components and Systems, 2014, 42(5): 453-463 doi: 10.1080/15325008.2013.857180
    [98] Namdari M, Jazayeri-Rad H. Incipient fault diagnosis using support vector machines based on monitoring continuous decision functions. Engineering Applications of Artificial Intelligence, 2014, 28: 22-35 doi: 10.1016/j.engappai.2013.11.013
    [99] Fernández-Francos D, Martínez-Rego D, Fontenla-Romero O, Alonso-Betanzos A. Automatic bearing fault diagnosis based on one-class ν-SVM. Computers and Industrial Engineering, 2013, 64(1): 357-365 doi: 10.1016/j.cie.2012.10.013
    [100] Huang G B, Zhu Q Y, Siew C K. Extreme learning machine: theory and applications. Neurocomputing, 2006, 70(1-3): 489-501 doi: 10.1016/j.neucom.2005.12.126
    [101] Hu X F, Zhao Z, Wang S, Wang F L, He D K, Wu S K. Multi-stage extreme learning machine for fault diagnosis on hydraulic tube tester. Neural Computing and Applications, 2008, 17(4): 399-403 doi: 10.1007/s00521-007-0139-1
    [102] Tian Y, Ma J, Lu C, Wang Z L. Rolling bearing fault diagnosis under variable conditions using LMD-SVD and extreme learning machine. Mechanism and Machine Theory, 2015, 90: 175-186 doi: 10.1016/j.mechmachtheory.2015.03.014
    [103] Zadeh L A. Fuzzy sets. Information and Control, 1965, 8(3): 338-353 doi: 10.1016/S0019-9958(65)90241-X
    [104] Isermann R. On fuzzy logic applications for automatic control, supervision, and fault diagnosis. IEEE Transactions on Systems, Man, and Cybernetics, Part A: Systems and Humans, 1998, 28(2): 221-235 doi: 10.1109/3468.661149
    [105] Chow M Y. Methodologies of Using Neural Network and Fuzzy Logic Technologies for Motor Incipient Fault Detection. River Edge, NJ, USA: World Scientific, 1997.
    [106] Lou X S, Loparo K A. Bearing fault diagnosis based on wavelet transform and fuzzy inference. Mechanical Systems and Signal Processing, 2004, 18(5): 1077-1095 doi: 10.1016/S0888-3270(03)00077-3
    [107] Yang B S, Oh M S, Tan A C C. Fault diagnosis of induction motor based on decision trees and adaptive neuro-fuzzy inference. Expert Systems with Applications, 2009, 36(2): 1840-1849 doi: 10.1016/j.eswa.2007.12.010
    [108] 周东华, 刘洋, 何潇. 闭环系统故障诊断技术综述. 自动化学报, 2013, 39(11): 1933-1943 doi: 10.3724/SP.J.1004.2013.01933

    Zhou Dong-Hua, Liu Yang, He Xiao. Review on fault diagnosis techniques for closed-loop systems. Acta Automatica Sinica, 2013, 39(11): 1933-1943 doi: 10.3724/SP.J.1004.2013.01933
    [109] McNabb C A, Qin S J. Fault diagnosis in the feedback-invariant subspace of closed-loop systems. Industrial and Engineering Chemistry Research, 2005, 44(8): 2359-2368 doi: 10.1021/ie049570o
    [110] 高敬礼, 文成林, 刘妹琴. 基于奇异值分解和叠加法的慢速小目标检测算法. 上海交通大学学报, 2015, 49(6): 876-883 http://www.cnki.com.cn/Article/CJFDTOTAL-SHJT201506023.htm

    Gao Jing-Li, Wen Cheng-Lin, Liu Mei-Qin. Low-speed small target detection based on SVD and superposition. Journal of Shanghai Jiaotong University, 2015, 49(6): 876-883 http://www.cnki.com.cn/Article/CJFDTOTAL-SHJT201506023.htm
    [111] Lv F Y, Wen C L, Bao Z J, Liu M Q. Fault diagnosis based on deep learning. In: Proceedings of the 2016 American Control Conference (ACC2016), Boston, MA, USA: IEEE, 2016. 6851-6856
    [112] Li C L, Hu S Y, Gao S H, Tang J. Real-time grayscale-thermal tracking via Laplacian sparse representation. In: Proceedings of the 22nd International Conference on MultiMedia Modeling. Miami, FL, USA: Springer International Publishing, 2016. 54-65
    [113] Xu Y, Zhang Z, Lu G M, Yang J. Approximately symmetrical face images for image preprocessing in face recognition and sparse representation based classification. Pattern Recognition, 2016, 54: 68-82 doi: 10.1016/j.patcog.2015.12.017
    [114] Namias V. The fractional order Fourier transform and its application to quantum mechanics. IMA Journal of Applied Mathematics, 1980, 25(3): 241-265 doi: 10.1093/imamat/25.3.241
    [115] Ozaktas H M, Ankan O, Kutay M A, Bozdagt G. Digital computation of the fractional Fourier transform. IEEE Transactions on Signal Processing, 1996, 44(9): 2141-2150 doi: 10.1109/78.536672
    [116] 高哲, 廖晓钟. 一种线性分数阶系统稳定性的频域判别准则. 自动化学报, 2011, 37(11): 1387-1394 http://www.aas.net.cn/CN/abstract/abstract17628.shtml

    Gao Zhe, Liao Xiao-Zhong. A stability criterion for linear fractional order systems in frequency domain. Acta Automatica Sinica, 2011, 37(11): 1387-1394 http://www.aas.net.cn/CN/abstract/abstract17628.shtml
    [117] Lin L F, Wang H Q, Lv W Y, Zhong S C. A novel parameter-induced stochastic resonance phenomena in fractional Fourier domain. Mechanical Systems and Signal Processing, 2016, 76-77: 771-779 doi: 10.1016/j.ymssp.2016.02.016
  • 加载中
图(1)
计量
  • 文章访问数:  4448
  • HTML全文浏览量:  1546
  • PDF下载量:  3088
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-02-29
  • 录用日期:  2016-06-06
  • 刊出日期:  2016-09-01

目录

    /

    返回文章
    返回