| 
	                    [1]
	                 | 
				
					Huang Z X. Extensions to the K-means algorithm for clustering large data sets with categorical values. Data Mining and Knowledge Discovery, 1998, 2(3): 283-304
					 | 
			
		
				| 
	                    [2]
	                 | 
				
					Jain A K, Dubes R C. Algorithms for Clustering Data. New Jersey: Prentice-Hall, 1988.
					 | 
			
		
				| 
	                    [3]
	                 | 
				
					Han J, Kamber M. Data Mining: Concepts and Techniques. San Francisco: Morgan Kaufmann, 2001.
					 | 
			
		
				| 
	                    [4]
	                 | 
				
					Chen W F, Feng G C. Spectral clustering: a semi-supervised approach. Neurocomputing, 2012, 77(1): 229-242
					 | 
			
		
				| 
	                    [5]
	                 | 
				
					Zhang W, Yoshida T, Tang X J, Wang Q. Text clustering using frequent itemsets. Knowledge-Based Systems, 2010, 23(5): 379-388
					 | 
			
		
				| 
	                    [6]
	                 | 
				
					Hsu C C, Chen C L, Su Y W. Hierarchical clustering of mixed data based on distance hierarchy. Information Sciences, 2007, 177(20): 4474-4492
					 | 
			
		
				| 
	                    [7]
	                 | 
				
					Hsu C C, Huang Y P. Incremental clustering of mixed data based on distance hierarchy. Expert Systems with Applications, 2008, 35(3): 1177-1185
					 | 
			
		
				| 
	                    [8]
	                 | 
				
					Lloyd S P. Least squares quantization in PCM. IEEE Transactions on Information Theory, 1982, 28(2): 129-137
					 | 
			
		
				| 
	                    [9]
	                 | 
				
					Berget I, Mevik B H, Nas T. New modifications and applications of fuzzy C-means methodology. Computational Statistics & Data Analysis, 2008, 52(5): 2403-2418
					 | 
			
		
				| 
	                    [10]
	                 | 
				
					Guha S, Rastogi R, Shim K. CURE: an efficient clustering algorithm for large databases. In: Proceedings of the 1998 ACM SIGMOD International Conference on Management of Data. Washington: ACM Press, 1998. 73-84
					 | 
			
		
				| 
	                    [11]
	                 | 
				
					S. H. Cluster Analysis Algorithms. West Sussex: Ellis Horwood Limited, 1980.
					 | 
			
		
				| 
	                    [12]
	                 | 
				
					Zhang T, Ramakrishnan R, Livny M. BIRCH: an efficient data clustering method for very large databases. In: Proceedings of the 1996 ACM SIGMOD International Conference on Management of Data. Montreal: ACM Press, 1996. 103-114
					 | 
			
		
				| 
	                    [13]
	                 | 
				
					Ester M, Kriegel H P, Sander J, Xu X W. A density-based algorithm for discovering clusters in large spatial databases with noise. In: Proceedings of KDD. 1996. 226-232
					 | 
			
		
				| 
	                    [14]
	                 | 
				
					Bi Kai, Wang Xiao-Dan, Xing Ya-Qiong. Fuzzy clustering ensemble based on fuzzy measure and DS evidence theory. Control and Decision, 2015, 30(5): 823-830 (毕凯, 王晓丹, 邢雅琼. 基于模糊测度和证据理论的模糊聚类集成方法. 控制与决策, 2015, 30(5): 823-830)
					 | 
			
		
				| 
	                    [15]
	                 | 
				
					Liu Z G, Pan Q, Dezert J, Mercier G. Credal C-means clustering method based on belief functions. Knowledge-Based Systems, 2015, 74: 119-132
					 | 
			
		
				| 
	                    [16]
	                 | 
				
					Huang Z X. A fast clustering algorithm to cluster very large categorical data sets in data mining. In: Research Issues on Data Mining and Knowledge Discovery. Arizona: ACM Press, 1997. 1-8
					 | 
			
		
				| 
	                    [17]
	                 | 
				
					Gan G, Wu J, Yang Z. A genetic fuzzy K-modes algorithm for clustering categorical data. Expert Systems with Applications, 2009, 36(2): 1615-1620
					 | 
			
		
				| 
	                    [18]
	                 | 
				
					Barbara D, Couto J, Li Y. COOLCAT: an entropy-based algorithm for categorical clustering. In: Proceedings of the 11th International Conference on Information and Knowledge Management. Virginia: ACM Press, 2002. 582-589
					 | 
			
		
				| 
	                    [19]
	                 | 
				
					Huang Z X. Clustering large data sets with mixed numeric and categorical values. In: Proceedings of the 1st Pacific-Asia Conference on Knowledge Discovery and Data Mining. Singapore: World Scientific Publishing, 1997. 21-34
					 | 
			
		
				| 
	                    [20]
	                 | 
				
					Chatzis S P. A fuzzy C-means-type algorithm for clustering of data with mixed numeric and categorical attributes employing a probabilistic dissimilarity functional. Expert Systems with Applications, 2011, 38(7): 8684-8689
					 | 
			
		
				| 
	                    [21]
	                 | 
				
					Gath I, Geva A B. Unsupervised optimal fuzzy clustering. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1989, 711(7): 773-780
					 | 
			
		
				| 
	                    [22]
	                 | 
				
					Zheng Z, Gong M G, Ma J J, Jiao L C, Wu Q D. Unsupervised evolutionary clustering algorithm for mixed type data. In: Proceedings of the 2010 IEEE Congress on Evolutionary Computation. Barcelona: IEEE, 2010. 1-8
					 | 
			
		
				| 
	                    [23]
	                 | 
				
					Li C, Biswas G. Unsupervised learning with mixed numeric and nominal data. IEEE Transactions on Knowledge and Data Engineering, 2002, 14(4): 673-690
					 | 
			
		
				| 
	                    [24]
	                 | 
				
					Goodall D W. A new similarity index based on probability. Biometrics, 1966, 22(4): 882-907
					 | 
			
		
				| 
	                    [25]
	                 | 
				
					Hsu C C, Chen Y C. Mining of mixed data with application to catalog marketing. Expert Systems with Applications, 2007, 32(1): 12-23
					 | 
			
		
				| 
	                    [26]
	                 | 
				
					Ahmad A, Dey L. A K-mean clustering algorithm for mixed numeric and categorical data. Data & Knowledge Engineering, 2007, 63(2): 503-527
					 | 
			
		
				| 
	                    [27]
	                 | 
				
					Ji J C, Bai T, Zhou C G, Ma C, Wang Z. An improved K-prototypes clustering algorithm for mixed numeric and categorical data. Neurocomputing, 2013, 120: 590-596
					 | 
			
		
				| 
	                    [28]
	                 | 
				
					Ji J C, Pang W, Zhou C G, Han X, Wang Z. A fuzzy K-prototype clustering algorithm for mixed numeric and categorical data. Knowledge-based Systems, 2012, 30: 129-135
					 | 
			
		
				| 
	                    [29]
	                 | 
				
					Rodriguez A, Laio A. Clustering by fast search and find of density peaks. Science, 2014, 344(6191): 1492-1496
					 | 
			
		
				| 
	                    [30]
	                 | 
				
					Wang Song-Gui, Shi Jian-Hong, Yin Su-Ju, Wu Mi-Xia. Introduction to Linear Models. Beijing: Science Press, 2004. (王松桂, 史建红, 尹素菊, 吴密霞. 线性模型引论. 北京: 科学出版社, 2004.)
					 |