2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

混合动力系统能量管理策略的实时优化控制算法

夏超英 张聪

夏超英, 张聪. 混合动力系统能量管理策略的实时优化控制算法. 自动化学报, 2015, 41(3): 508-517. doi: 10.16383/j.aas.2015.c140119
引用本文: 夏超英, 张聪. 混合动力系统能量管理策略的实时优化控制算法. 自动化学报, 2015, 41(3): 508-517. doi: 10.16383/j.aas.2015.c140119
XIA Chao-Ying, ZHANG Cong. Real-time Optimization Control Algorithm of Energy Management Strategy for Hybrid Electric Vehicles. ACTA AUTOMATICA SINICA, 2015, 41(3): 508-517. doi: 10.16383/j.aas.2015.c140119
Citation: XIA Chao-Ying, ZHANG Cong. Real-time Optimization Control Algorithm of Energy Management Strategy for Hybrid Electric Vehicles. ACTA AUTOMATICA SINICA, 2015, 41(3): 508-517. doi: 10.16383/j.aas.2015.c140119

混合动力系统能量管理策略的实时优化控制算法

doi: 10.16383/j.aas.2015.c140119
详细信息
    作者简介:

    张聪 天津大学电气与自动化工程学院博士研究生.主要研究方向为混合动力汽车能量管理. E-mail: zhangcong@tju.edu.cn

    通讯作者:

    夏超英 天津大学电气与自动化工程学院教授.主要研究方向为控制理论与应用, 电力电子技术及装置, 电动汽车和混合动力汽车.本文通信作者. E-mail: xiachaoying@126.com

Real-time Optimization Control Algorithm of Energy Management Strategy for Hybrid Electric Vehicles

  • 摘要: 依据最优控制理论得到的混合动力汽车能量管理策略与未来的驾驶需求相关联,无法解决算法的实时性问题.本文另辟蹊径,结合规则构造二次型性能指标来限制发动机功率的大幅度频繁波动,间接地降低油耗.为此,在对混合动力系统近似线性处理的基础上,利用二次型最优跟踪理论推导出定常的反馈控制律,将发动机和电机功率表示成系统当前状态和车速指令的线性函数并应用于非线性实车系统.仿真结果表明,本文提出的能量管理实时控制算法可以达到良好的节油效果, 对不同的道路工况和电池初始荷电状态有良好的适应性.
  • [1] Banvait H, Anwar S, Chen Y B. A rule-based energy management strategy for plug-in hybrid electric vehicle (PHEV). In: Proceedings of the 2009 American Control Conference. St. Louis, MO: IEEE, 2009. 3938-3943
    [2] [2] Schouten N J, Salman M A, Kheir N A. Fuzzy logic control for parallel hybrid vehicles. IEEE Transactions on Control Systems Technology, 2002, 10(3): 460-468
    [3] Qian Li-Jun, Xi Zhu-Yong, Zhao Han. Simulation of hybrid electric vehicle control strategy based on fuzzy neural network. Journal of System Simulation, 2006, 18(5): 1384- 1387(钱立军, 袭著永, 赵韩. 基于模糊神经网络的混合动力汽车控制策略仿真. 系统仿真学报, 2006, 18(5): 1384-1387)
    [4] [4] Patil R M, Filipi Z, Fathy H K. Comparison of supervisory control strategies for series plug-in hybrid electric vehicle powertrains through dynamic programming. IEEE Transactions on Control Systems Technology, 2002, 22(2): 502-509
    [5] [5] Wang R, Lukic S M. Dynamic programming technique in hybrid electric vehicle optimization. In: Proceedings of the 2012 IEEE International Electric Vehicle Conference. Greenville, SC: IEEE, 2012. 1-8
    [6] [6] Chen Z, Mi C C, Xu J, Gong X Z, You C W. Energy management for a power-split plug-in hybrid electric vehicle based on dynamic programming and neural networks. IEEE Transactions on Vehicular Technology, 2014, 63(4): 1567-1580
    [7] [7] Gkce K, Ozdemir A. An instantaneous optimization strategy based on effciency maps for internal combustion engine/battery hybrid vehicles. Energy Conversion and Management, 2014, 81: 255-269
    [8] [8] Kum D, Peng H, Bucknor N K. Supervisory control of parallel hybrid electric vehicles for fuel and emission reduction. Journal of Dynamic Systems, Measurement, and Control, 2011, 133(6): 061010
    [9] [9] Moura S J, Fathy H K, Callaway D S, Stein J L. A stochastic optimal control approach for power management in plug-in hybrid electric vehicles. IEEE Transactions on Control Systems Technology, 2011, 19(3): 545-555
    [10] Kim B, Kim Y G, Kim T, Park Y, Cha S W. HEV cruise control strategy on GPS (Navigation) information. In: Proceedings of the 24th International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium and Exhibition 2009, EVS 24. Belgium: European Association for Battery, 2009. 1843- 1850
    [11] Borhan H, Vahidi A, Phillips A M, Kuang M L, Kolmanovsky I V, Cairano S D. MPC-based energy management of a power-split hybrid electric vehicle. IEEE Transactions on Control Systems Technology, 2012, 20(3): 593-603
    [12] Jeong J, Lee D, Kim N, Zheng C, Park Y I, Cha S W. Development of PMP-based power management strategy for a parallel hybrid electric bus. International Journal of Precision Engineering and Manufacturing, 2014, 15(2): 345-353
    [13] Kim N W, Lee D H, Zheng C, Shin C, Seo H, Cha S W. Realization of pmp-based control for hybrid electric vehicles in a backward-looking simulation. International Journal of Automotive Technology, 2014, 15(4): 625-635
    [14] Zou Y, Liu T, Sun F, Huei P. Comparative study of dynamic programming and Pontryagin's minimum principle on energy management for a parallel hybrid electric vehicle. Energies, 2013, 6(4): 2305-2318
    [15] Hou C, Ouyang M G, Xu L F, Wang H W. Approximate Pontryagin's minimum principle applied to the energy management of plug-in hybrid electric vehicles. Applied Energy, 2014, 115: 174-189
    [16] Kim N, Cha S W, Huei P. Optimal control of hybrid electric vehicles based on Pontryagin's minimum principle. IEEE Transactions on Control Systems Technology, 2011, 19(5): 1279-1287
    [17] Skugor B, Pavkovic D, Deur J. A series-parallel hybrid electric vehicle control strategy including instantaneous optimization of equivalent fuel consumption. In: Proceedings of the 2012 IEEE International Conference on Control Applications. Dubrovnik: IEEE, 2012. 310-316
    [18] Serrao L, Onori S, Rizzoni G. ECMS as a realization of Pontryagin's minimum principle for HEV control. In: Proceedings of the 2009 American Control Conference. St. Louis, MO: IEEE, 2009. 3964-3969
    [19] Park J, Park J H. Development of equivalent fuel consumption minimization strategy for hybrid electric vehicles. International Journal of Automotive Technology, 2012, 13(5): 835-843
    [20] Kim N, Cha S W, Huei P. Optimal equivalent fuel consumption for hybrid electric vehicles. IEEE Transactions on Control Systems Technology, 2012, 20(3): 817-825
    [21] Gurkaynak Y, Khaligh A, Emadi A. Neural adaptive control strategy for hybrid electric vehicles with parallel powertrain. In: Proceedings of the 2010 IEEE on Vehicle Power and Propulsion Conference. Lille: IEEE, 2010. 1-6
    [22] Musardo C, Rizzoni G, Staccia B. A-ECMS: an adaptive algorithm for hybrid electric vehicles energy management. In: Proceedings of the 44th IEEE Conference on Decision and Control, and the European Control Conference. Piscataway, USA: IEEE, 2005. 1816-1823
    [23] Zhang Cheng-Hui, Wu Jian, Cui Na-Xin. Energy management strategy of parallel hybrid electric vehicle with continuously variable transmission. Chinese Journal of Mechanical Engineering, 2007, 43(10): 114-118(张承慧, 吴剑, 崔纳新. 基于无极变速器的并联式混合动力汽车能量管理策略. 机械工程学报, 2007, 43(10): 114-118)
    [24] Liu Bao, Tang Wan-Sheng. Modern Control Theory. Beijing: China Machine Press, 2006. 293-318(刘豹, 唐万生. 现代控制理论. 北京: 机械工业出版社, 2006. 293- 318)
  • 加载中
计量
  • 文章访问数:  2330
  • HTML全文浏览量:  129
  • PDF下载量:  942
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-03-03
  • 修回日期:  2014-08-12
  • 刊出日期:  2015-03-20

目录

    /

    返回文章
    返回