2.624

2020影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

时滞扩散性复杂网络同步保性能控制

罗毅平 周笔锋

罗毅平, 周笔锋. 时滞扩散性复杂网络同步保性能控制. 自动化学报, 2015, 41(1): 147-156. doi: 10.16383/j.aas.2015.c140202
引用本文: 罗毅平, 周笔锋. 时滞扩散性复杂网络同步保性能控制. 自动化学报, 2015, 41(1): 147-156. doi: 10.16383/j.aas.2015.c140202
LUO Yi-Ping, ZHOU Bi-Feng. Guaranteed Cost Synchronization Control of Diffusible Complex Network Systems with Time Delay. ACTA AUTOMATICA SINICA, 2015, 41(1): 147-156. doi: 10.16383/j.aas.2015.c140202
Citation: LUO Yi-Ping, ZHOU Bi-Feng. Guaranteed Cost Synchronization Control of Diffusible Complex Network Systems with Time Delay. ACTA AUTOMATICA SINICA, 2015, 41(1): 147-156. doi: 10.16383/j.aas.2015.c140202

时滞扩散性复杂网络同步保性能控制

doi: 10.16383/j.aas.2015.c140202
基金项目: 

国家自然科学基金(11372107, 61174211)资助

详细信息
    作者简介:

    罗毅平 湖南工程学院教授.2006年获华南理工大学博士学位.主要研究方向为神经网络,模式识别,复杂网络和分布参数控制.E-mail:lyp8688@sohu.com

    通讯作者:

    周笔锋 湖南工程学院硕士研究生.2012年获湖南工程学院电气科学与技术专业学士学位.主要研究方向为复杂网络和分布参数控制.本文通信作者.E-mail:zhoubifeng99@163.com

Guaranteed Cost Synchronization Control of Diffusible Complex Network Systems with Time Delay

Funds: 

Supported by National Natural Science Foundation of China (11372107, 61174211)

  • 摘要: 针对节点扩张的时滞复杂网络系统, 在节点扩张的条件下, 讨论此类系统的同步保性能控制问题. 首先采用自适应控制方法, 利用Lyapunov-Krasovskii稳定性理论,结合矩阵不等式的凸优化问题处理方法, 得出了时 滞复杂网络系统保性能控制器存在的充分条件; 当系统节点的扩张后, 在原有自适应控制器不能使系统同步稳定的条件下, 设计脉冲控制器, 利用牵制控制原理使系统达到稳定同步. 所设计的自适应动态反馈控制器在保证系统的渐近稳定条件下使系 统性能指标满足一定的要求. 最后给出一个数值仿真说明其有效性.
  • [1] Watts D J, Strogatz S H. Collective dynamics of "small-world" networks. Nature, 1998, 393(6684): 440-442
    [2] Pecora L M, Carroll T L. Synchronization in chaotic systems. Physical Review Letters, 1990, 64(8): 821-824
    [3] Zhang Y J, Gu D W, Xu S Y. Global exponential adaptive synchronization of complex dynamical networks with neutral-type neural network nodes and stochastic disturbances. IEEE Transactions on Circuits and Systems I: Regular Papers, 2013, 60(10): 2709-2718
    [4] Zhou J, Lu J A, Lu J H. Adaptive synchronization of an uncertain complex dynamical network. IEEE Transactions on Automatic Control, 2006, 51(4): 652-656
    [5] Liu H, Chen J, Lu J A, Cao M. Generalized synchronization in complex dynamical networks via adaptive couplings. Physica A: Statistical Mechanics and Its Applications, 2010, 389(8): 1759-1770
    [6] Su H S, Rong Z H, Chen M Z Q, Wang X F, Chen G R, Wang H W. Decentralized adaptive pinning control for cluster synchronization of complex dynamical networks. IEEE Transactions on Cybernetics, 2013, 43(1): 394-399
    [7] Chen Y, Yu W W, Li F F, Feng S S. Synchronization of complex networks with impulsive control and disconnected topology. IEEE Transactions on Circuits and Systems II: Express Briefs, 2013, 60(5): 292-296
    [8] Jiang H B, Bi Q S. Impulsive synchronization of networked nonlinear dynamical systems. Physics Letters A, 2010, 374(27): 2723-2729
    [9] Guan Z H, Liu Z W, Feng G, Wang Y W. Synchronization of complex dynamical networks with time-varying delays via impulsive distributed control. IEEE Transactions on Circuits and Systems I: Regular Papers, 2010, 57(8): 2182-2195
    [10] Wang Y W, Yang M, Wang H O, Guan Z H. Robust stabilization of complex switched networks with parametric uncertainties and delays via impulsive control. IEEE Transactions on Circuits and Systems I: Regular Papers, 2009, 56(9): 2100-2108
    [11] Wong W K, Zhang W B, Tang Y, Wu X T. Stochastic synchronization of complex networks with mixed impulses. IEEE Transactions on. Circuits and Systems I: Regular Papers, 2013, 60(10): 2657-2667
    [12] Li Z, Chen G R. Robust adaptive synchronization of uncertain dynamical networks. Physics Letters A, 2004, 324(2-3): 166-178
    [13] Mahdavi N, Menhaj M B, Kurths J, Lu J Q. Fuzzy complex dynamical networks and its synchronization. IEEE Transactions on Cybernetics, 2013, 43(2): 648-659
    [14] Chen W H, Guan Z H, Lu X M. Delay-dependent output feedback guaranteed cost control for uncertain time-delay systems. Automatica, 2004, 40(7): 1263-1268
    [15] Li Y, Jian C. An LMI approach to guaranteed cost control of linear uncertain time-delay systems. Automatica, 1999, 35(6): 1155-1159
    [16] Dou C X, Duan Z S, Jia X B, Niu P F. Study of delay-independent decentralized guaranteed cost control for large scale systems. International Journal of Control Automation and Systems, 2011, 9(3): 478-488
    [17] Xi J X, Yu Y, Liu G B, Zhong Y S. Guaranteed-cost consensus for singular multi-agent systems with switching topologies. IEEE Transactions on Circuits and Systems I: Regular Papers, 2014, 61(5): 1531-1542
    [18] Lee T H, Park J H, Ji D H, Kwon O M, Lee S M. Guaranteed cost synchronization of a complex dynamical network via dynamic feedback control. Applied Mathematics and Computation, 2012, 218(11): 6469-6481
    [19] Liu Yue, Ma Shu-Ping. A singular system approach to output feedback sliding mode control for time-delay systems. Acta Automatica Sinica, 2013, 39(5): 594-601(刘月, 马树萍. 时滞系统的输出反馈滑模控制的一种奇异系统方法. 自动化学报, 2013, 39(5): 594-601)
    [20] Su Cheng-Li, Zhao Jia-Cheng, Li Ping. Robust predictive control for a class of multiple time delay uncertain systems with nonlinear disturbance. Acta Automatica Sinica, 2013, 39(5): 644-649(苏成利, 赵家程, 李平. 一类具有非线性扰动的多重时滞不确定系统鲁棒预测控制. 自动化学报, 2013, 39(5): 644-649)
    [21] Bekiaris-Liberis N, Krstic M. Compensation of state-dependent input delay for nonlinear systems. IEEE Transactions on Automatic Control, 2013, 58(2): 275-289
    [22] Liu Y R, Wang Z D, Liang J L, Liu X H. Synchronization and state estimation for discrete-time complex networks with distributed delays. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2008, 38(5): 1314-1325
    [23] Li Xiu-Ying, Wang Jin-Yu, Sun Shu-Li. H∞ filter design for networked systems with one-step random delays and multiple packet dropouts. Acta Automatica Sinica, 2014, 40(1): 155-160(李秀英, 王金玉, 孙书利. 具有一步随机时滞和多丢包的网络系统H∞滤波器设计. 自动化学报, 2014, 40(1): 155-160)
    [24] Boyd S, Ghaoui L E, Feron E. Linear Matrix Inequalities in System and Control Theory. Philadelphia, PA: Society for Industrial and Applied Mathematics, 1994.
  • 加载中
计量
  • 文章访问数:  1397
  • HTML全文浏览量:  70
  • PDF下载量:  862
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-03-25
  • 修回日期:  2014-06-25
  • 刊出日期:  2015-01-20

目录

    /

    返回文章
    返回