2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

针铁矿法沉铁过程亚铁离子浓度预测

谢世文 谢永芳 阳春华 蒋朝辉 桂卫华

谢世文, 谢永芳, 阳春华, 蒋朝辉, 桂卫华. 针铁矿法沉铁过程亚铁离子浓度预测. 自动化学报, 2014, 40(5): 830-837. doi: 10.3724/SP.J.1004.2014.00830
引用本文: 谢世文, 谢永芳, 阳春华, 蒋朝辉, 桂卫华. 针铁矿法沉铁过程亚铁离子浓度预测. 自动化学报, 2014, 40(5): 830-837. doi: 10.3724/SP.J.1004.2014.00830
XIE Shi-Wen, XIE Yong-Fang, YANG Chun-Hua, JIANG Zhao-Hui, GUI Wei-Hua. A Ferrous Iron Concentration Prediction Model for the Process of Iron Precipitation by Goethite. ACTA AUTOMATICA SINICA, 2014, 40(5): 830-837. doi: 10.3724/SP.J.1004.2014.00830
Citation: XIE Shi-Wen, XIE Yong-Fang, YANG Chun-Hua, JIANG Zhao-Hui, GUI Wei-Hua. A Ferrous Iron Concentration Prediction Model for the Process of Iron Precipitation by Goethite. ACTA AUTOMATICA SINICA, 2014, 40(5): 830-837. doi: 10.3724/SP.J.1004.2014.00830

针铁矿法沉铁过程亚铁离子浓度预测

doi: 10.3724/SP.J.1004.2014.00830
基金项目: 

国家自然科学基金创新研究群体科学基金(61321003),国家自然科学基金(61273186),国家科技支撑计划(2012BAF03B05),中央高校基本科研业务费专项资金(2011JQ009),湖南省自然科学基金委员会与株洲市政府自然科学联合基金(13JJ8003)资助

详细信息
    作者简介:

    谢世文 中南大学信息科学与工程学院博士研究生. 主要研究方向为工业过程建模与优化控制,智能控制系统.E-mail:mathking@csu.edu.cn

A Ferrous Iron Concentration Prediction Model for the Process of Iron Precipitation by Goethite

Funds: 

Supported by the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (61321003), National Natural Science Foundation of China (61273186), National Key Technology Research and Development Program of China (2012BAF03B05), the Fundamental Research Funds for the Central Universities (2011JQ009), and Joint Funds of Hunan Provincial Natural Science Foundation and Zhuzhou Municipal Government of China (13JJ8003)

  • 摘要: 针对针铁矿法沉铁过程出口亚铁离子浓度离线化验获得,存在很大滞后性,难以实现沉铁过程实时控制的问题,研究反应器出口亚铁离子浓度在线预测方法.本文在分析沉铁过程化学反应机理的基础上,考虑铜离子对反应过程的影响,结合连续搅拌反应器(Continuous stirred tank reactor,CSTR)特性,建立了针铁矿法沉铁过程的机理模型,并提出了基于信息交换的双粒子群搜索算法(Double particle swarm optimization,DPSO)优化选择机理模型的参数,构建基于最小二乘支持向量机(Least squares support vector machine,LS-SVM)的机理模型输出误差的补偿模型,采用并联补集成方式建立了亚铁离子浓度的集成预测模型.工业现场数据验证了所建模型能有效地反映亚铁离子浓度的变化趋势,为针铁矿法沉铁过程的优化控制奠定了基础.
  • [1] Chang Y F, Zhai X J, Li B C, Fu Y. Removal of iron from acidic leach liquor of lateritic nickel ore by goethite precipitate. Hydrometallurgy, 2010, 101(1-2): 84-87
    [2] Loan M, Newman O M G, Cooper R M G, Farrow J B, Parkinson G M. Defining the paragoethite process for iron removal in zinc hydrometallurgy. Hydrometallurgy, 2006, 81(2): 104-129
    [3] Kumar N, Khanduja N. Mathematical modelling and simulation of CSTR using MIT rule. In: Proceedings of the 2012 IEEE 5th India International Conference on Power Electronics. Delhi, India: IEEE, 2012. 1-5
    [4] Gui Wei-Hua, Yang Chun-Hua, Chen Xiao-Fang, Wang Ya-Lin. Modeling and optimization problems and challenges arising in nonferrous metallurgical process. Acta Automatica Sinica, 2013, 39(3): 197-207(桂卫华, 阳春华, 陈晓方, 王雅琳. 有色冶金过程建模与优化的若干问题及挑战. 自动化学报, 2013, 39(3): 197-207)
    [5] Haakana T, Lahtinen A, Takala H, Ruonala M, Turunen I. Development and modelling of a novel reactor for direct leaching of zinc sulphide concentrates. Chemical Engineering Science, 2007, 62(18-20): 5648-5654
    [6] Markus H, Fugleberg S, Valtakari D, Salmi T, Murzin D Y, Lahtinen M. Reduction of ferric to ferrous with sphalerite concentrate, kinetic modelling. Hydrometallurgy, 2004, 73(3-4): 269-282
    [7] Xiong Fu-Qiang, Gui Wei-Hua, Yang Chun-Hua, Li Yong-Gang. Dynamic modeling for process of iron precipitation based on goethite method. Journal of Central South University (Science and Technology), 2012, 43(2): 541-547(熊富强, 桂卫华, 阳春华, 李勇刚. 基于针铁矿法的沉铁过程动态建模. 中南大学学报(自然科学版), 2012, 43(2): 541-547)
    [8] Xiong Fu-Qiang, Gui Wei-Hua, Yang Chun-Hua. Integrated prediction model of iron concentration in goethite method to remove iron process. Control and Decision, 2012, 27(3): 229-334, 342(熊富强, 桂卫华, 阳春华. 针铁矿法沉铁过程铁离子浓度集成预测模型. 控制与决策, 2012, 27(3): 229-334, 342)
    [9] Gui Wei-Hua, Yang Chun-Hua. Intelligent Modeling, Control and Optimization in the Complex Non-ferrous Metallurgy Production Process. Beijing: Science Press, 2010. 860-866(桂卫华, 阳春华. 复杂有色冶金生产过程智能建模、控制与优化. 北京: 科学出版社, 2010. 860-866)
    [10] Chen Nai-Sheng, Zhao Jing-Gui, Zhang Bin-Qiu. Research on oxidation speed of ferrous ion with the process of iron removal by the method of goethite. Journal of Natural Science of Heilongjiang University, 1984, (3): 76-80(陈耐生, 赵经贵, 张滨秋. 对针铁矿法除铁过程中亚铁离子氧化速度的研究. 黑龙江大学自然科学学报, 1984, (3): 76-80)
    [11] Homma S, Ogata S, Koga J, Matsumoto S. Gas-solid reaction model for a shrinking spherical particle with unreacted shrinking core. Chemical Engineering Science, 2005, 60(18): 4971-4980
    [12] Liu Jian-Hua, Liu Guo-Mai, Yang Rong-Hua, Hu Wen-Yu. Analysis of interactivity and randomness in particle swarm optimization. Acta Automatica Sinica, 2012, 38(9): 1471-1484(刘建华, 刘国买, 杨荣华, 胡文瑜. 粒子群算法的交互性与随机性分析. 自动化学报, 2012, 38(9): 1471-1484)
    [13] Alfi A. PSO with adaptive mutation and inertia weight and its application in parameter estimation of dynamic systems. Acta Automatica Sinica, 2011, 37(5): 541-549
    [14] Xu F S, Chen W. Stochastic portfolio selection based on velocity limited particle swarm optimization. In: Proceedings of the 6th World Congress on Intelligent Control and Automation. Dalian, China: IEEE, 2006. 3599-3603
  • 加载中
计量
  • 文章访问数:  2570
  • HTML全文浏览量:  59
  • PDF下载量:  897
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-04-03
  • 修回日期:  2013-05-24
  • 刊出日期:  2014-05-20

目录

    /

    返回文章
    返回