2.624

2020影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

连续Takagi-Sugeno模糊系统的局部H控制

王利魁 黎冰 刘娟娟

王利魁, 黎冰, 刘娟娟. 连续Takagi-Sugeno模糊系统的局部H∞控制. 自动化学报, 2013, 39(12): 2170-2176. doi: 10.3724/SP.J.1004.2013.02170
引用本文: 王利魁, 黎冰, 刘娟娟. 连续Takagi-Sugeno模糊系统的局部H控制. 自动化学报, 2013, 39(12): 2170-2176. doi: 10.3724/SP.J.1004.2013.02170
WANG Li-Kui, LI Bing, LIU Juan-Juan. Local H∞ Control for Continuous-time Takagi-Sugeno Fuzzy Model. ACTA AUTOMATICA SINICA, 2013, 39(12): 2170-2176. doi: 10.3724/SP.J.1004.2013.02170
Citation: WANG Li-Kui, LI Bing, LIU Juan-Juan. Local H Control for Continuous-time Takagi-Sugeno Fuzzy Model. ACTA AUTOMATICA SINICA, 2013, 39(12): 2170-2176. doi: 10.3724/SP.J.1004.2013.02170

连续Takagi-Sugeno模糊系统的局部H控制

doi: 10.3724/SP.J.1004.2013.02170
基金项目: 

国家自然科学基金 (61104220),江西省自然科学基金 (2010GQS0173),江西省教育厅基金 (GJJ11170)资助

详细信息
    作者简介:

    王利魁 南昌航空大学数学与信息科学学院副教授,博士. 主要研究方向为模糊控制和滤波. 本文通信作者. E-mail:wlk0228@163.com

Local H Control for Continuous-time Takagi-Sugeno Fuzzy Model

Funds: 

Supported by National Natural Science Foundation of China (61104220), Natural Science Foundation of Jiangxi Province (2010G QS0173), and Scientific Research Foundation of Jiangxi Provincial Education Department (GJJ11170)

  • 摘要: 针对含有外部扰动的连续Takagi-Sugeno模糊系统,本文给出了抑制这种扰动的局部H∞控制新方法. 首先,应用拉格朗日极值法给出了新的界定隶属函数导数的条件,与现有文献相比该条件有两个优点:1)能够将 Lyapunov水平集必须包含在紧集C中的要求转化为线性矩阵不等式 (Linear matrix inequality,LMI);2)能够找出比现有文献大的稳定区域. 然后,基于此条件得到了局部H∞控制定理. 最后通过两个仿真算例证明了该方法的有效性.
  • [1] Takagi T, Sugeno M. Fuzzy identification of systems and its applications to modeling and control. IEEE Transactions on Systems, Man, and Cybernetics, 1985, SMC-15(1): 116-132
    [2] Wang W J, Chen Y J, Sun C H. Relaxed stabilization criteria for discrete-time T-S fuzzy control systems based on a switching fuzzy model and piecewise Lyapunov function. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2007, 37(3): 551-559
    [3] Ding B C, Sun H X, Yang P. Further studies on LMI-based relaxed stabilization conditions for nonlinear systems in Takagi-Sugeno's form. Automatica, 2006, 42(3): 503-508
    [4] Sala A, Ariño C. Asymptotically necessary and sufficient conditions for stability and performance in fuzzy control: Applications of Polya's theorem. Fuzzy Sets and Systems, 2007, 158(24): 2671-2686
    [5] Guerra T M, Vermeiren L. LMI-based relaxed nonquadratic stabilization conditions for nonlinear systems in the Takagi-Sugeno's form. Automatica, 2004, 40(5): 823-829
    [6] Liu X D, Zhang Q L. New approaches to H∞ controller designs based on fuzzy observers for T-S fuzzy systems via LMI. Automatica, 2003, 39(9): 1571-1582
    [7] Feng G, Chen M, Sun D, Zhang T J. Approaches to robust filtering design of discrete time fuzzy dynamic systems. IEEE Transactions on Fuzzy Systems, 2008, 16(2): 331-340
    [8] Gao H J, Zhao Y, Lam J, Chen K. H∞ fuzzy filtering of nonlinear systems with intermittent measurements. IEEE Transactions on Fuzzy Systems, 2009, 17(2): 291-300
    [9] Lin C, Wang Q G, Lee T H, He Y, Chen B. Observer-based H∞ fuzzy control design for T-S fuzzy systems with state delays. Automatica, 2008, 44(3): 868-874
    [10] Zhao Y, Gao H J, Lam J, Du B Z. Stability and stabilization of delayed T-S fuzzy systems: a delay partitioning approach. IEEE Transactions on Fuzzy Systems, 2009, 17(4): 750-762
    [11] Zhao Y, Gao H J. Fuzzy-model-based control of an overhead crane with input delay and actuator saturation. IEEE Transactions on Fuzzy Systems, 2012, 20(1): 181-186
    [12] Gao H J, Liu X M, Lam J. Stability analysis and stabilization for discrete-time fuzzy systems with time-varying delay. IEEE Transactions on Systems, Man, and Cybernetics, Part B, Cybernetics, 2009, 39(2): 306-317
    [13] Feng J, Wang S Q. Reliable fuzzy control for a class of nonlinear networked control systems with time delay. Acta Automatica Sinica, 2012, 38(7): 1091-1099
    [14] Xia Z L, Li J M. Delay-dependent H∞ control for T-S fuzzy systems based on a switching fuzzy model and piecewise Lyapunov function. Acta Automatica Sinica, 2009, 35(9): 1235 -1239
    [15] Wu H N, Zhang H Y. Reliable H∞ fuzzy control for a class of discrete-time nonlinear systems using multiple fuzzy lyapunov functions. IEEE Transactions on Circuits and Systems Ⅱ: Express Briefs, 2007, 54(4): 357-361
    [16] Tanaka K, Hori T, Wang H O. A multiple Lyapunov function approach to stabilization of fuzzy control systems. IEEE Transactions on Fuzzy Systems, 2003, 11(4): 582-589
    [17] Tognetti E S, Oliveira R C L F, Peres P L D. Selective H_2 and H∞ stabilization of Takagi-Sugeno fuzzy systems. IEEE Transactions on Fuzzy Systems, 2011, 19(5): 890-900
    [18] Guerra T M, Bernal M. A way to eSCApe from the quadratic framework. In: Proceedings of the 18th international conference on Fuzzy Systems. PiSCAtaway, NJ, USA: IEEE, 2009. 784-789
    [19] Bernal M, Guerra T M. Generalized nonquadratic stability of continuous-time Takagi-Sugeno models. IEEE Transactions on Fuzzy Systems, 2010, 18(4): 815-822
    [20] Pan J T, Guerra T M, Fei S M, Jaadari A. Non-quadratic stabilization of continuous T-S fuzzy models: LMI solution for a local approach. IEEE Transactions on Fuzzy Systems, 2012, 20(3): 594-602
    [21] Bernal M, Soto-Cota A, Cortez J, Pitarch J L. Local non-quadratic H∞ control for continuous-time Takagi-Sugeno models. In: Proceedings of the 2011 IEEE International Conference on Fuzzy Systems (FUZZ). Taipei, China: IEEE, 2011. 1615-1620
    [22] Hu T S, Lin Z L, Chen B M. An analysis and design method for linear system subject to actuator saturation and disturbance. Automatica, 2002, 38(2): 351-359
  • 加载中
计量
  • 文章访问数:  1409
  • HTML全文浏览量:  47
  • PDF下载量:  981
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-12-19
  • 修回日期:  2013-05-13
  • 刊出日期:  2013-12-20

目录

    /

    返回文章
    返回