2.624

2020影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于双模态自适应小波粒子群的永磁同步电机多参数识别与温度监测方法

刘朝华 周少武 刘侃 章兢

刘朝华, 周少武, 刘侃, 章兢. 基于双模态自适应小波粒子群的永磁同步电机多参数识别与温度监测方法. 自动化学报, 2013, 39(12): 2121-2130. doi: 10.3724/SP.J.1004.2013.02121
引用本文: 刘朝华, 周少武, 刘侃, 章兢. 基于双模态自适应小波粒子群的永磁同步电机多参数识别与温度监测方法. 自动化学报, 2013, 39(12): 2121-2130. doi: 10.3724/SP.J.1004.2013.02121
LIU Zhao-Hua, ZHOU Shao-Wu, LIU Kan, ZHANG Jing. Permanent Magnet Synchronous Motor Multiple Parameter Identification and Temperature Monitoring Based on Binary-modal Adaptive Wavelet Particle Swarm Optimization. ACTA AUTOMATICA SINICA, 2013, 39(12): 2121-2130. doi: 10.3724/SP.J.1004.2013.02121
Citation: LIU Zhao-Hua, ZHOU Shao-Wu, LIU Kan, ZHANG Jing. Permanent Magnet Synchronous Motor Multiple Parameter Identification and Temperature Monitoring Based on Binary-modal Adaptive Wavelet Particle Swarm Optimization. ACTA AUTOMATICA SINICA, 2013, 39(12): 2121-2130. doi: 10.3724/SP.J.1004.2013.02121

基于双模态自适应小波粒子群的永磁同步电机多参数识别与温度监测方法

doi: 10.3724/SP.J.1004.2013.02121
基金项目: 

国家科技支撑计划(2012BAH09B02),国家自然科学基金(61174140,61203309),教育部高校博士点基金(20110161110035),中国博士后科学基金项目 (2013M540628),湖南省自然科学基金(13JJ8014,14JJ3107)资助

详细信息
    作者简介:

    周少武 湖南科技大学信息与电气工程学院教授. 主要研究方向为机器人控制技术. E-mail:shaowuzhou@163.com

Permanent Magnet Synchronous Motor Multiple Parameter Identification and Temperature Monitoring Based on Binary-modal Adaptive Wavelet Particle Swarm Optimization

Funds: 

Supported by Key Projects in the National Science and Technology Pillar Program (2012BAH09B02), National Natural Science Foundation of China (61174140, 61203309), Doctoral Fund of Ministry of Education of China (20110161110035), China Postdoctoral Science Foundation Funded Project (2013M540628), and National Natural Science Foundation of Hunan Province (13JJ8014, 14JJ3107)

  • 摘要: 提出了一种双模态自适应小波粒子群(Binary-modal adaptive wavelet particle swarm optimization,BAWPSO)的永磁同步电机(Permanent magnet synchronous motor,PMSM)多参数识别与温度监测方法.为了提高算法动态寻优性能,群体被划分为正向学习和反向学习两种模态;对处于不同模态的粒子分别采用正向学习策略与反向学习策略协同求解,扩大了解的搜索空间;同时对粒子个体极值采用自适应小波算子增强学习以提高收敛精度.永磁同步电机参数辨识结果表明所 提方法能够有效地辨识电机电阻,dq轴电感与转子磁链等参数,且能有效追踪系统参数变化值.在辨识出电机定子绕阻值后,根据金属阻值与温度之间的线性 原理间接计算定转子温度,从而实现永磁同步电机系统温度在线监测.
  • [1] Ooshima M, Chiba A, Rahman A, Fukao T. An improved control method of buried-type IPM bearingless motors considering magnetic saturation and magnetic pull variation. IEEE Transactions on Energy Conversion, 2004, 19(3): 569-575
    [2] Xu Bo-Qiang, Li He-Ming, Zhu Ling, Sun Li-Ling. New on-line temperature monitoring method for generator stator and rotor windings. Automation of Electric Power Systems, 2002, 26(1): 35-38, 57 (许伯强, 李和明, 朱凌, 孙丽玲. 发电机定转子绕组温度在线监测新方法. 电力系统自动化, 2002, 26(1): 35-38, 57)
    [3] Wang Li-Guo, Zhang Feng-Na, Lv Xin, Xu Zhuang, Xu Dian-Guo, Deng Hui. Temperature identification of electric submersible motor based on perturbation analysis of therodynamic parameters. Transactions of China Electrotechnical Society, 2011, 26(6): 7-11(王立国, 张凤娜, 吕辛, 徐壮, 徐殿国, 邓辉. 基于热力学参数摄动分析的潜油电机温度辨识. 电工技术学报, 2011, 26(6): 7-11)
    [4] Ramakrishnan R, Islam R, Islam M, Sebastian T. Real time estimation of parameters for controlling and monitoring permanent magnet synchronous motors. In: Proceedings of the 2009 IEEE International Electric Machines and Drives Conference. Miami, USA: IEEE, 2009. 1194-1199
    [5] Bolognani S, Tubiana L, Zigliotto M. Extended Kalman filter tuning in sensorless PMSM drives. IEEE Transactions on Industry Applications, 2003, 39(6): 1741-1747
    [6] Liu T, Elbuluk M, Husain I. Sensorless adaptive neural network control of permanent magnet synchronous motors. In: Proceedings of the 1999 International Conference on Electric Machines and Drives. Seattle, WA, USA: IEEE, 1999. 287-289
    [7] Liu K, Zhang Q, Chen J T, Zhu Z Q, Zhang J. Online multiparameter estimation of nonsalient-pole PM synchronous machines with temperature variation tracking. IEEE Transactions on Industrial Electronics, 2011, 58(5): 1776-1788
    [8] Rashed M, Macconnell P F A, Stronach A F, Acarnley P. Sensorless indirect-rotor-field-orientation speed control of a permanent-magnet synchronous motor with stator-resistance estimation. IEEE Transactions on Industrial Electronics, 2007, 54(3): 1664-1675
    [9] Liu K, Zhang Q, Zhu Z Q, Zhang J, Shen A W, Stewart P. Comparison of two novel MRAS based strategies for identifying parameters in permanent magnet synchronous motors. International Journal of Automation and Computing, 2010, 7(4): 516-524
    [10] Rahman K M, Hiti S. Identification of machine parameters of a synchronous motor. IEEE Transactions on Industry Applications, 2005, 41(2): 557-565
    [11] Wu Mao-Lin, Huang Sheng-Hua. Nonlinear parameters identification of PMSM. Transactions of China Electrotechnical Society, 2009, 24(8): 65-68(吴茂林, 黄声华. 永磁同步电机非线性参数辨识. 电工技术学报, 2009, 24(8): 65-68)
    [12] Liu L, Liu W X, Cartes D A. Permanent magnet synchronous motor parameter identification using particle swarm optimization. International Journal of Computational Intelligence Research, 2008, 4(2): 211-218
    [13] Liu Zhao-Hua, Zhang Jing, Li Xiao-Hua, Zhang Ying-Jie. Immune co-evolution particle swarm optimization for permanent magnet synchronous motor parameter identification. Acta Automatica Sinica, 2012, 38(10): 1698-1708(刘朝华, 章兢, 李小花, 张英杰. 免疫协同微粒群进化算法的永磁同步电机多参数辨识模型方法. 自动化学报, 2012, 38(10): 1698-1708)
    [14] Rahnamayan S, Tizhoosh H R, Salama M M A. Opposition-based differential evolution. IEEE Transactions on Evolutionary Computation, 2008, 12(1): 64-79
    [15] Ling S H, Iu H H, Chan K Y, Lam H K, Yeung B C, Leung F H. Hybrid particle swarm optimization with wavelet mutation and its industrial applications. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2008, 38(3): 743-763
    [16] Guo Ke, Chen Ling, Wei You-Hua. Optimization Method and Application. Beijing: Higher Education Press, 2007 (郭科, 陈聆, 魏友华. 最优化方法及其应用. 北京: 高等教育出版社, 2007)
    [17] Esmin A A A, Lambert-Torres G, de Souza A C Z. A hybrid particle swarm optimization applied to loss power minimization. IEEE Transactions on Power Systems, 2005, 20(2): 859-866
    [18] Juang C F. A hybrid of genetic algorithm and particle swarm optimization for recurrent network design. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2004, 34(2): 997-1006
    [19] Liang J J, Qin A K, Suganthan P N, Baskar S. Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Transactions on Evolutionary Computation, 2006, 10(3): 281-295
    [20] Zhan Z H, Zhang J, Li Y, Chung H S H. Adaptive particle swarm optimization. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2009, 39(6): 1362-1380
  • 加载中
计量
  • 文章访问数:  1530
  • HTML全文浏览量:  100
  • PDF下载量:  1326
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-09-26
  • 修回日期:  2013-04-15
  • 刊出日期:  2013-12-20

目录

    /

    返回文章
    返回