2.624

2020影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种高性能SAR图像边缘点特征匹配方法

陈天泽 李燕

陈天泽, 李燕. 一种高性能SAR图像边缘点特征匹配方法. 自动化学报, 2013, 39(12): 2051-2063. doi: 10.3724/SP.J.1004.2013.02051
引用本文: 陈天泽, 李燕. 一种高性能SAR图像边缘点特征匹配方法. 自动化学报, 2013, 39(12): 2051-2063. doi: 10.3724/SP.J.1004.2013.02051
CHEN Tian-Ze, LI Yan. A High Performance Edge Point Feature Match Method of SAR Images. ACTA AUTOMATICA SINICA, 2013, 39(12): 2051-2063. doi: 10.3724/SP.J.1004.2013.02051
Citation: CHEN Tian-Ze, LI Yan. A High Performance Edge Point Feature Match Method of SAR Images. ACTA AUTOMATICA SINICA, 2013, 39(12): 2051-2063. doi: 10.3724/SP.J.1004.2013.02051

一种高性能SAR图像边缘点特征匹配方法

doi: 10.3724/SP.J.1004.2013.02051
基金项目: 

国家自然科学基金(61002023)资助

详细信息
    作者简介:

    陈天泽 国防科学技术大学讲师,博士.主要研究方向为遥感信息处理,图像特征匹配,自动目标识别和SAR 图像解译.本文通信作者.E-mail:tzchen77@126.com

A High Performance Edge Point Feature Match Method of SAR Images

Funds: 

Supported by National Natural Science Foundation of China (61002023)

  • 摘要: 针对合成孔径雷达(Synthetic aperture radar,SAR)图像特征匹配中特征提取的不稳定性和相似度优化搜索的复杂性问题,提出了一种精确高效稳健的SAR图像边缘点集匹配方法. 首先,分析了仿射变换模型在遥感图像匹配中的适应性,并对仿射变换模型进行了参数分解;其次,提出了基于方向模板的SAR图像边缘检测算子,并利用SAR图像边缘的梯度和方向特征,建立了基于像素迁移的多源SAR边缘点集相似性匹配准则,以及图像匹配的联合相似度-联合特征均方和(Square summation joint feature,SSJF);然后,利用改进的遗传算法(Genetic algorithm,GA)来进行相似度的全局极值优化搜索,获取变换模型参数和边缘点集的对应关系;最后,从理论上分析了本文方法的性能,并利用多幅SAR图像的匹配实验以及与原有方法的对比分析,对本文方法的性能进行了验证.
  • [1] Zitová B, Flusser J. Image registration methods: a survey. Image and Vision Computing, 2003, 21(11): 977-1000
    [2] Lv Jin-Jian. Study on Feature-Based Multi-Source Remote Sensing Image Registration Techniques[Ph.D. dissertation], National University of Defense Technology, China, 2008(吕金建. 基于特征的多源遥感图像配准技术研究[博士学位论文], 国防科学技术大学, 中国, 2008)
    [3] He B W, Lin Z M, Li Y F. An automatic registration algorithm for the SCAttered point clouds based on the curvature feature. Optics and Laser Technology, 2013, 46(3): 53-60
    [4] Yin P Y. Particle swarm optimization for point pattern matching. Journal of Visual Communication and Image Representation, 2006, 17(1): 143-162
    [5] Chen Er-Xue, Li Zeng-Yuan, Tian Xin, Li Shi-Ming. Application of SCAle invariant feature transformation to SAR imagery registration. Acta Automatica Sinica, 2005, 34(8): 861-868
    [6] Schwind P, Suri S, Reinartz P, Siebert A. Applicability of the SIFT operator to geometric SAR image registration. International Journal of Remote Sensing, 2010, 31(8): 1959-1980
    [7] Wang S H, You H J, Fu K. BFSIFT: a novel method to find feature matches for SAR image registration. IEEE Geoscience and Remote Sensing Letters, 2012, 9(4): 649-653
    [8] Pang Y E, Li W, Yuan Y, Pan J. Fully affine invariant SURF for image matching. Neurocomputing, 2012, 85(3): 6-10
    [9] Bulatov D, Wernerus P, Heipke C. Multi-view dense matching supported by triangular meshes. ISPRS Journal of Photogrammetry and Remote Sensing, 2011, 66(6): 907-918
    [10] Yang S, Wei E L, Guan R M, Zhang X F, Qin J, Wang Y Y. Triangle chain codes for image matching. Neurocomputing, 2013, 120(3): 268-276
    [11] Xiong B L, He Z G, Hu C B, Chen Q, Jiang Y M, Kuang K Y. A method of acquiring tie points based on closed regions in SAR images. In: Proceedings of the 2012 IEEE International Conference on Geoscience and Remote Sensing. Munich, German: IEEE, 2012. 2121-2124
    [12] Zheng D C, Han M. Shape retrieval and recognition based on fuzzy histogram. Journal of Visual Communication and Image Representation, 2013, 24(7): 1009-1019
    [13] Shi J L, Chen F, Lu J B, Chen G. An evolutionary image matching approach. Applied Soft Computing, 2013, 13(6): 3060-3065
    [14] Wang Z Z, Liang M, Li Y F. Using diagonals of orthogonal projection matrices for affine invariant contour matching. Image and Vision Computing, 2011, 29(10): 681-692
    [15] Keller Y, Averbuch A. Multisensor image registration via implicit similarity. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(5): 794-801
    [16] Yao J C, Kian L G. A refined algorithm for multisensor image registration based on pixel migration. IEEE Transactions on Processing, 2006, 15(7): 1839-1847
    [17] Su Ze-Qun, Zhou Min-Lu, Wang Jian-Mei. Optical and SAR image registeration via improving implicit similarity. Journal of Tongji University (Natural Science), 2013, 41(4): 600 -606(苏泽群, 周敏璐, 王建梅. 一种改进的隐含相似性光学和SAR图像配准算法. 同济大学学报(自然科学版), 2013, 41(4): 600-606)
    [18] Wang P, Wang P, Qu Z G, Gao Y H, Shen Z K. A refined coherent point drift (CPD) algorithm for point set registration. Science China Information Sciences, 2011, 54(12): 2639-2646
    [19] Chen Tao. Affine Invariant Feature Extraction of Images[Ph.D. dissertation], National University of Defense Technology, China, 2006(陈涛. 图像仿射不变特征提取方法研究[博士学位论文], 国防科学技术大学, 中国, 2006)
    [20] Richard H, Andrew Z. Multiple View Geometry in Computer Vision (2nd Edition). London: Cambridge University Press, 2003. 56-58
    [21] Jia Cheng-Li. Extraction of Road and Airport of SAR Images[Ph.D. dissertation], National University of Defense Technology, China, 2006(贾承丽. SAR图像道路和机场提取方法研究[博士学位论文], 国防科学技术大学, 中国, 2006)
    [22] Touzi R, Lopes A, Bousquet P. A statistical and geometrical edge detector for SAR images. IEEE Transactions on Geoscience and Remote Sensing, 1988, 26(6): 764-773
    [23] Fjrtoft R, Lopés A, Marthon P. An optimal multiedge detector for SAR image segmentation. IEEE Transactions on Geoscience and Remote Sensing, 1998, 36(3): 793-802
    [24] Jia Cheng-Li, Kuang Gang-Yao. An improved edge detection method of SAR image. Journal of Electronics and Information Technology, 2007, 29(2): 379-382(贾承丽, 匡纲要. 一种改进的边缘检测方法. 电子与信息学报, 2007, 29(2): 379-382)
    [25] Chen Tian-Ze, Wu Yu-Hao, Li Yan. The linear edge extraction with complicated background in high resolution SAR images based on the DS evidence theory. Signal Processing, 2011, 27(1): 94-101(陈天泽, 吴禹昊, 李燕. 基于DS理论的高分辨率SAR图像复杂背景直线边缘提取方法. 信号处理, 2011, 27(1): 94-101)
    [26] Holland J H. Adaptation in Natural and Artificial System: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence. Ann Arbor, MI: University Michigan Press, 1975. 10-15
  • 加载中
计量
  • 文章访问数:  1361
  • HTML全文浏览量:  38
  • PDF下载量:  1017
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-10-30
  • 修回日期:  2013-08-19
  • 刊出日期:  2013-12-20

目录

    /

    返回文章
    返回