2.624

2020影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

活体光学投影断层成像系统与应用

郭进 刘侠 董迪 朱守平 杨鑫 田捷

郭进, 刘侠, 董迪, 朱守平, 杨鑫, 田捷. 活体光学投影断层成像系统与应用. 自动化学报, 2013, 39(12): 2043-2050. doi: 10.3724/SP.J.1004.2013.02043
引用本文: 郭进, 刘侠, 董迪, 朱守平, 杨鑫, 田捷. 活体光学投影断层成像系统与应用. 自动化学报, 2013, 39(12): 2043-2050. doi: 10.3724/SP.J.1004.2013.02043
GUO Jin, LIU Xia, DONG Di, ZHU Shou-Ping, YANG Xin, TIAN Jie. A Novel In-vivo Optical Projection Tomography System and Its Application. ACTA AUTOMATICA SINICA, 2013, 39(12): 2043-2050. doi: 10.3724/SP.J.1004.2013.02043
Citation: GUO Jin, LIU Xia, DONG Di, ZHU Shou-Ping, YANG Xin, TIAN Jie. A Novel In-vivo Optical Projection Tomography System and Its Application. ACTA AUTOMATICA SINICA, 2013, 39(12): 2043-2050. doi: 10.3724/SP.J.1004.2013.02043

活体光学投影断层成像系统与应用

doi: 10.3724/SP.J.1004.2013.02043
基金项目: 

国家自然科学基金(61172167,81101084),中国科学院科研装备研制项目(YZ201164),中国科学院外籍青年科学家计划(2010Y2GA03),黑龙江省普通高等学校青年学术骨干支持计划(1155G12),北京市自然科学基金重点项目(4111004),中国科学院"外国专家特聘研究员计划" (2012T1G0036),黑龙江省自然科学基金项目(F201311),黑龙江省 教育厅科学技术研究项目(12531119)资助

详细信息
    作者简介:

    郭进 哈尔滨理工大学自动化学院硕士研究生.2009年获得哈尔滨理工大学自动化学院学士学位.主要研究方向为模式识别与智能系统E-mail:guojin@fingerpass.net.cn

A Novel In-vivo Optical Projection Tomography System and Its Application

Funds: 

Supported by National Natural Science Foundation of China (61172167, 81101084), Instrument Developing Project of the Chinese Academy of Sciences (YZ201164), Fellowship for Young International Scientists of Chinese Academy of Sciences (2010Y 2GA03), Supporting Foundation for University Key Youth Teacher of Heilongjiang Province of China (1155G12), Natural Science Foundation of Beijing (4111004), Visiting Professorship for Senior International Scientists of Chinese Academy of Sciences (2012T1G0036), Natural Science Foundation of Heilongjiang Province (F201311), and the Foundation of Heilongjiang Educational Committee (12531119)

  • 摘要: 光学投影断层成像(Optical projection tomography,OPT)技术可以对1~10mm 尺度的低散射生物样本进行激发成像,具有微米级的空间分辨率、无辐射、成本低等特点,为小尺寸生物样本的高分辨率三维成像提供了一种新的手段. OPT最早通过对离体生物组织如小鼠胚胎、小鼠器官等成像,进行药物疗效评估、基因表达等研究,但是离体成像不能动态、完整地反映生物组织的变化,因此活体成像技术逐渐成为OPT领域的研究热点.本文详细介绍了我们自主研发的活体OPT系统,该成像系统以准直激光器为光源单元,高精密移动和旋转 电控平台为样本定位单元,低温电子倍增(Electron multiplying,EM) CCD探测器为采集单元,实现了针对果蝇蛹等小模式动物的活体三维成像.该系统的空间分辨率优于10 μm,成像视野1~10mm,扫描时间小于2min,重建时间小于5s.最后,本文通过果蝇蛹的三维活体成像实验展示该系统的操作流程、成像结果和初步的生物应用.
  • [1] Megason S G, Fraser S E. Imaging in systems biology. Cell, 2007, 130(5): 784-795
    [2] Kobayashi H, Kawamoto S, Brechbiel M W, Jo S K, Hu X Z, Yang T X, Diwan B A, Waldmann T A, Schnermann J, Choyke P L, Star R A. Micro-MRI methods to detect renal cysts in mice. Kidney International, 2004, 65(4): 1511-1516
    [3] Dong D, Tian J, Dai Y K, Yan G R, Yang F, Wu P. Unified reconstruction framework for multi-modal medical imaging. Journal of X-Ray Science and Technology, 2011, 19(1): 111-126
    [4] Jan M L, Chuang K S, Chen G W, Ni Y C, Chen S, Chang C H, et al. A three-dimensional registration method for automated fusion of micro PET-CT-SPECT whole-body images. IEEE Transactions on Medical Imaging, 2005, 24(7): 886-893
    [5] Robles F E, Wilson C, Grant G, Wax A. Molecular imaging true-colour spectroscopic optical coherence tomography. Nature Photonics, 2011, 5(12): 744-747
    [6] Parrozzani R, Lazzarini D, Dario A, Midena E. In vivo confocal microscopy of ocular surface squamous neoplasia. Eye, 2011, 25(4): 455-460
    [7] Sharpe J, Ahlgren U, Perry P, Hill B, Ross A, Hecksher-Sorensen J, Baldock R, Davidson D. Optical projection tomography as a tool for 3D microscopy and gene expression studies. Science, 2002, 296(5567): 541-545
    [8] Thomas A, Newton J, Oldham M. A method to correct for stray light in telecentric optical ——CT imaging of radiochromic dosimeters. Physics in Medicine and Biology, 2011, 56(14): 4433-4451
    [9] Doran S J, Koerkamp K K, Bero M A, Jenneson P, Morton E J, Gilboy W B. A CCD-based optical CT SCAnner for high-resolution 3D imaging of radiation dose distributions: equipment specifications, optical simulations and preliminary results. Physics in Medicine and Biology, 2001, 46(12): 3191-3213
    [10] Boot M J, Westerberg C H, Sanz-Ezquerro J, Cotterell J, Schweitzer R, Torres M, Sharpe J. In vitro whole-organ imaging: 4D quantification of growing mouse limb buds. Nature Methods, 2008, 5(7): 609-612
    [11] Rieckher M, Birk U J, Meyer H, Ripoll J, Tavernarakis N. Microscopic optical projection tomography in vivo. PLoS One, 2011, 6(4): e18963
    [12] Bassi A, Fieramonti L, D'Andrea C, Mione M, Valentini G. In vivo label-free three-dimensional imaging of zebrafish vasculature with optical projection tomography. Journal of Biomedical Optics, 2011, 16(10): 100502
    [13] Chen L L, McGinty J, Taylor H B, Bugeon L, Lamb J R, Dallman M J, French P M. Incorporation of an experimentally determined MTF for spatial frequency filtering and deconvolution during optical projection tomography reconstruction. Optics Express, 2012, 20(7): 7323-7337
    [14] Fauver M, Seibel E J, Rahn J R, Meyer M G, Patten F W, Neumann T, Nelson A. Three-dimensional imaging of single isolated cell nuclei using optical projection tomography. Optics Express, 2005, 13(11): 4210-4223
    [15] Vinegoni C, Pitsouli C, Razansky D, Perrimon N, Ntziachristos V. In vivo imaging of drosophila melanogaster pupae with mesoscopic fluorescence tomography. Nature Methods, 2008, 5(1): 45-47
    [16] Dong D, Zhu S P, Qin C H, Kumar V, Stein J V, Oehler S, Savakis C, Tian J, Ripoll J. Automated recovery of the center of rotation in optical projection tomography in the presence of SCAttering. IEEE Journal of Biomedical and Health Informatics, 2013, 17(1): 198-204
    [17] Tian J, Xue J, Dai Y K, Chen J, Zheng J. A novel software platform for medical image processing and analyzing. IEEE Transactions on Information Technology in Biomedicine, 2008, 12(6): 800-812
    [18] Azevedo S G, Schneberk D J, Fitch J P, Martz H E. Calculation of the rotational centers in computed tomography sinograms. IEEE Transactions on Nuclear Science, 1990, 37(4): 1525-1540
    [19] Wang Y, Wang R K. Imaging using parallel integrals in optical projection tomography. Physics in Medicine and Biology, 2006, 51(23): 6023-6032
    [20] Kak A C, Slaney M. Principles of Computerized Tomographic Imaging. Philadelphia: Society for Industrial and Applied Mathematics, 2001
    [21] Sun B H, Xu P Z, Salvaterra P M. Dynamic visualization of nervous system in live drosophila. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(18): 10438-10443
    [22] Zhu S P, Dong D, Birk U J, Rieckher M, Tavernarakis N, Qu X C, Liang J, Tian J, Ripoll J. Automated motion correction for in vivo optical projection tomography. IEEE Transactions on Medical Imaging, 2012, 31(7): 1358-1371
    [23] Tsien R Y. The green fluorescent protein. Annual Review of Biochemistry, 1998, 67(1): 509-544
    [24] Yang F, Li Q D, Xiang D H, Cao Y, Tian J. A versatile optical model for hybrid rendering of volume data. IEEE Transactions on Visualization and Computer Graphics, 2012, 18(6): 925-937
    [25] Xiang D H, Tian J, Yang F, Yang Q, Zhang X, Li Q D, Liu X. Skeleton cuts ——an efficient segmentation method for volume rendering. IEEE Transactions on Visualization and Computer Graphics, 2011, 17(9): 1295-1306
  • 加载中
计量
  • 文章访问数:  1532
  • HTML全文浏览量:  49
  • PDF下载量:  1096
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-12-25
  • 修回日期:  2013-06-06
  • 刊出日期:  2013-12-20

目录

    /

    返回文章
    返回