2.624

2020影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

两类仿鲹科机器鱼倒游运动控制方法的对比研究

吴正兴 喻俊志 谭民

吴正兴, 喻俊志, 谭民. 两类仿鲹科机器鱼倒游运动控制方法的对比研究. 自动化学报, 2013, 39(12): 2032-2042. doi: 10.3724/SP.J.1004.2013.02032
引用本文: 吴正兴, 喻俊志, 谭民. 两类仿鲹科机器鱼倒游运动控制方法的对比研究. 自动化学报, 2013, 39(12): 2032-2042. doi: 10.3724/SP.J.1004.2013.02032
WU Zheng-Xing, YU Jun-Zhi, TAN Min. Comparison of Two Methods to Implement Backward Swimming for a Carangiform Robotic Fish. ACTA AUTOMATICA SINICA, 2013, 39(12): 2032-2042. doi: 10.3724/SP.J.1004.2013.02032
Citation: WU Zheng-Xing, YU Jun-Zhi, TAN Min. Comparison of Two Methods to Implement Backward Swimming for a Carangiform Robotic Fish. ACTA AUTOMATICA SINICA, 2013, 39(12): 2032-2042. doi: 10.3724/SP.J.1004.2013.02032

两类仿鲹科机器鱼倒游运动控制方法的对比研究

doi: 10.3724/SP.J.1004.2013.02032
基金项目: 

国家自然科学基金(61075102),北京市自然科学基金(4102063,4122084)资助

详细信息
    作者简介:

    吴正兴 中国科学院自动化研究所复杂系统管理与控制国家重点实验室博士研究生. 主要研究方向为仿生机器人.E-mail:zhengxing.wu@ia.ac.cn

Comparison of Two Methods to Implement Backward Swimming for a Carangiform Robotic Fish

Funds: 

Supported by National Natural Science Foundation of China (61075102) and Natural Science Foundation of Beijing (4102063, 4122084)

  • 摘要: 给出并比较了两类分别采用鱼体波动方程和中枢模式发生器(Central pattern generator,CPG)控制仿鲹科机器鱼倒游运动的方法.前者主要通过修改鱼体波动方程、颠倒机器鱼各个关节的控制规律来实现 鱼体倒游;后者则基于CPG模型,产生各个关节的节律控制信号.基于CPG的倒游方法可进一步细分为两种:1) 相位颠倒的CPG控制方法,即通过逆转CPG控制机器鱼直游的相位关系;2) 相位-幅值颠倒的CPG控制方法,即通过逆转鱼体波的传播方向和摆动幅值来实现机器鱼倒游.文中针对这两大类、三种机器鱼倒游运动控制方法 进行了分析、仿真和实验.实验结果表明:在相同参数配置下,采用相位颠倒的CPG控制方法产生的倒游速度最大,但游动对水的扰动也最大;而采用鱼体波倒游和相位-幅值颠倒的CPG控制方法时,两者产生的最大倒游速度相差不大,扰动较小.此外,采用鱼体波倒游方法在频率切换时会有抖动现象,需要设计专门的过渡函数来消除;而采用CPG模型的方法 则可以实现平滑过渡.上述结果对提高水下游动机器人的机动性能具有重要的指导意义.
  • [1] Tan X B, Carpenter M, Thon J, Alequin-Ramos F. Analytical modeling and experimental studies of robotic fish turning. In: Proceedings of the 2010 IEEE International Conference on Robotics and Automation. Anchorage, AK: IEEE, 2010. 102-108
    [2] Ho T, Lee S. Design of a multi-locomotion underwater robot. Advanced Materials Research, 2012, 488-489: 1732-1736
    [3] Liang J H, Wang T M, Wen L. Development of a two-joint robotic fish for real-world exploration. Journal of Field Robotics, 2011, 28(1): 70-79
    [4] Sfakiotakis M, Lane D M, Davies J B C. Review of fish swimming modes for aquatic locomotion. IEEE Journal of Oceanic Engineering, 1999, 24(2): 237-252
    [5] D'AoUT K, Aerts P. A kinematic comparison of forward and backward swimming in the eel anguilla anguilla. The Journal of Experimental Biology, 1999, 202(11): 1511-1521
    [6] Zhou Chao, Cao Zhi-Qiang, Wang Shuo, Dong Xiang, Tan Min. Swimming backward of a biomimetic carangiform robot fish. Acta Automatica Sinica, 2008, 34(8): 1024-1027(周超, 曹志强, 王硕, 董翔, 谭民. 仿鲹科机器鱼的倒退游动控制. 自动化学报, 2008, 34(8): 1024-1027)
    [7] Islam S S, Zelenin P V, Orlovsky G N, Grillner S, Deliagina T G. Pattern of motor coordination underlying backward swimming in the lamprey. Journal of Neurophysiology, 2006, 96(1): 451-460
    [8] Ijspeert A J. Central pattern generators for locomotion control in animals and robots: a review. Neural Networks, 2008, 21(4): 642-653
    [9] Ijspeert A J, Crespi A, Ryczko D, Cabelguen J M. From swimming to walking with a salamander robot driven by a spinal cord model. Science, 2007, 315(5817): 1416-1420
    [10] Chen W H, Ren G J, Zhang J B, Wang J H. Smooth transition between different gaits of a hexapod robot via a central pattern generators algorithm. Journal of Intelligent and Robotic Systems, 2012, 67(3-4): 255-270
    [11] Christensen D J, Spröwitz A, Ijspeert A J. Distributed online learning of central pattern generators in modular robots. In: Proceedings of the 11th International Conference on Simulation of Adaptive Behavior. Berlin, Heidelberg: Springer-Verlag, 2010. 402-412
    [12] Santos C P, Matos V. Gait transition and modulation in a quadruped robot: a brainstem-like modulation approach. Robotics and Autonomous Systems, 2011, 59(9): 620-634
    [13] Crespi A, Lachat D, Pasquier A, Ijspeert A J. Controlling swimming and crawling in a fish robot using a central pattern generator. Autonomous Robots, 2008, 25(1-2): 3-13
    [14] Yu J Z, Wang M, Su Z H, Tan M, Zhang J W. Dynamic modeling and its application for a CPG-coupled robotic fish. In: Proceedings of the 2011 IEEE International Conference on Robotics and Automation. Shanghai, China: IEEE, 2011. 159-164
    [15] Wang M, Yu J Z, Tan M. Modeling neural control of robotic fish with pectoral fins using a CPG-based network. In: Proceedings of the 48th IEEE Conference on Decision and Control. Shanghai, China: IEEE, 2009. 6502-6507
    [16] Yu J Z, Wang M, Tan M, Zhang J W. Three-dimensional swimming. IEEE Robotics and Automation Magazine, 2011, 18(4): 47-58
    [17] Barrett D, Grosenbaugh M, Triantafyllou M. The optimal control of a flexible hull robotic undersea vehicle propelled by an oscillating foil. In: Proceedings of the 1996 Symposium on AUV. Monterey, CA, USA: IEEE, 1996. 1-9
    [18] Yu Jun-Zhi. Research on Control and Coordination of Multiple Bio-mimetic Robot Fishes[Ph.D. dissertation], University of Chinese Academy of Sciences, China, 2003(喻俊志. 多仿生机器鱼控制与协调研究[博士学位论文], 中国科学院研究生院, 中国, 2003)
    [19] Matsuoka K. Sustained oscillations generated by mutually inhibiting neurons with adaptation. Biological Cybernetics, 1985, 52(6): 367-376
    [20] Wu X D, Ma S G. Adaptive creeping locomotion of a CPG-controlled snake-like robot to environment change. Autonomous Robots, 2010, 28(3): 283-294
    [21] Kopell N, Washburn R Jr. Chaotic motions in the two-degree-of-freedom swing equations. IEEE Transactions on Circuits and Systems, 1982, 29(11): 738-746
    [22] Bay J S, Hemami H. Modeling of a neural pattern generator with coupled nonlinear oscillators. IEEE Transactions on Biomedical Engineering, 1987, 34(4): 297-306
    [23] Nakashima M, Ohgishi N, Ono K. A study on the propulsive mechanism of a double jointed fish robot utilizing self-excitation control. JSME International Journal Series C, 2003, 46(3): 982-990
    [24] Yan Q, Han Z, Zhang S W, Yang J. Parametric research of expermients on a carangiform robotic fish. Journal of Bionic Engineering, 2008, 5(2): 95-101
    [25] Liu Ying-Xiang. The Entity Design and Dynamic Tesearch on the Two-joint Robot Fish[Master dissertation], Harbin Institute of Technology, China, 2007(刘英想. 两关节机器鱼本体及动力学研究[硕士学位论文], 哈尔滨工业大学工学, 中国, 2007)
    [26] Wang C, Xie G, Wang L, Gao M. CPG-based locomotion control of a robotic fish: using linear oscillators and reducing control parameters via PSO. International Journal of Innovative Computing, Information and Control, 2011, 7(7): 4237-4249
    [27] Jeong I B, Park C S, Na K I, Han S, Kim J H. Particle swarm optimization-based central patter generator for robotic fish locomotion. In: Proceedings of the 2011 IEEE Congress on Evolutionary Computation. New Orleans, LA: IEEE, 2011. 152-157
    [28] Wang Ming. Locomotion Modeling and Control of Biomimetic Robotic Fish Based on Central Pattern Generators.[Ph.D. dissertation], University of Chinese Academy of Sciences, China, 2010(汪明. 基于CPG的仿生机器鱼运动建模与控制[博士学位论文], 中国科学院大学, 中国, 2010)
  • 加载中
计量
  • 文章访问数:  1336
  • HTML全文浏览量:  36
  • PDF下载量:  1260
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-01-17
  • 修回日期:  2012-05-22
  • 刊出日期:  2013-12-20

目录

    /

    返回文章
    返回