2.624

2020影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

初始状态为正交的二维线性正系统的渐近稳定性

祝乔 崔家瑞 胡广大

祝乔, 崔家瑞, 胡广大. 初始状态为正交的二维线性正系统的渐近稳定性. 自动化学报, 2013, 39(9): 1543-1546. doi: 10.3724/SP.J.1004.2013.01543
引用本文: 祝乔, 崔家瑞, 胡广大. 初始状态为正交的二维线性正系统的渐近稳定性. 自动化学报, 2013, 39(9): 1543-1546. doi: 10.3724/SP.J.1004.2013.01543
ZHU Qiao, CUI Jia-Rui, HU Guang-Da. Asymptotic Stability of 2-D Positive Linear Systems with Orthogonal Initial States. ACTA AUTOMATICA SINICA, 2013, 39(9): 1543-1546. doi: 10.3724/SP.J.1004.2013.01543
Citation: ZHU Qiao, CUI Jia-Rui, HU Guang-Da. Asymptotic Stability of 2-D Positive Linear Systems with Orthogonal Initial States. ACTA AUTOMATICA SINICA, 2013, 39(9): 1543-1546. doi: 10.3724/SP.J.1004.2013.01543

初始状态为正交的二维线性正系统的渐近稳定性

doi: 10.3724/SP.J.1004.2013.01543

Asymptotic Stability of 2-D Positive Linear Systems with Orthogonal Initial States

Funds: 

Supported by National Natural Science Foundation of China (61304087, 61333002, 11371053), National High Technology Research and Development Program of China (863 Program) (2013AA0 40705), Beijing Municipal Natural Science Foundation (4132065), and Doctoral Program Foundation of Institutions of Higher Education of China (20110006120034)

More Information
    Corresponding author: ZHU Qiao
  • 摘要: 本文分析了初始状态为正交的二维线性正系统的渐近稳定性. 与一维系统不同, 初始状态为正交的二维系统的稳定性严格依赖于合适的初始条件. 首先, 当初始状态 绝对收敛时, 二维正FM I 模型的渐近稳定性判据被提出. 然后, 针对二维正Rosser模型, 在初始状态 绝对收敛时, 相似的结论被给出. 最后, 两个数字实例证实了这些判据的有效性.
  • [1] Kaczorek T. Two-dimensional Linear Systems. Berlin: Springer, 1985
    [2] Antoniou A. Two-dimensional Digital Filters. New York: Marcel Dekker, 1992
    [3] Roesser R P. A discrete state-space model for linear image processing. IEEE Transactions on Automatic Control, 1975, 20(1): 1-10
    [4] Kurek J E, Zaremba M B. Iterative learning control synthesis based on 2-D system theory. IEEE Transactions on Automatic Control, 1993, 38(1): 121-125
    [5] Fornasini E, Marchesini G. On the internal stability of two-dimensional filters. IEEE Transactions on Automatic Control, 1979, 24(1): 129-130
    [6] Fornasini E, Marchesini G. State-space realization theory of two-dimensional filters. IEEE Transactions on Automatic Control, 1976, 21(4): 484-492
    [7] Hu G D, Liu M Z. Simple criteria for stability of two-dimensional linear systems. IEEE Transactions on Signal Processing, 2005, 53(12): 4720-4723
    [8] Liu T. Stability analysis of linear 2-D systems. Signal Processing, 2008, 88(8): 2078-2084
    [9] Zhu Q, Hu G D. Stability and absolute stability of a general 2-D non-linear FM second model. IET Control Theory and Applications, 2011, 5(1): 239-246
    [10] Zhu Q, Hu G D, Yin Y X. Lyapunov-type theorem of general two-D nonlinear parameter-varying FM second model. IEEE Transactions on Circuits Systems II: Express Briefs, 2012, 59(7): 453-457
    [11] Kaczorek T. Positive 1D and 2D Systems. London: Springer, 2002
    [12] Kurek J E. Stability of positive 2-D system described by the Roesser model. IEEE Transactions on Circuits Systems I: Fundamental Theory and Applications, 2002, 49(4): 531-533
    [13] Chu B, Liu Y H. On the asymptotic stability of positive 2-D systems described by the Roesser model. IEEE Transactions on Circuits Systems II: Express Briefs, 2007, 54(12): 1102-1104
    [14] Kaczorek T. Asymptotic stability of positive 2D linear systems with delays. Bulletin of the Polish Academy of Sciences, Technical Sciences, 2009, 57(2): 133-138
    [15] Liu X, Yu W, Wang L. Necessary and sufficient asymptotic stability criterion for 2-D positive systems with time-varying state delays described by Roesser model. IET Control Theory and Applications, 2011, 5(5): 663-668
    [16] Kaczorek T. Positive 2D hybrid linear systems. Bulletin of the Polish Academy of Sciences, Technical Sciences, 2007, 55(4): 351-358
    [17] Kaczorek T. Stability of continuous-discrete linear systems described by the general model. Bulletin of the Polish Academy of Sciences, Technical Sciences, 2011, 59(2): 189-193
    [18] Ahmed A R E. On the stability of two-dimensional discrete systems. IEEE Transactions on Automatic Control, 1980, 25(3): 551-552
    [19] Valcher M E. On the internal stability and asymptotic behavior of 2-D positive systems. IEEE Transactions on Circuits Systems I: Fundamental Theory and Applications, 1997, 44(7): 602-613
    [20] Kaczorek T. Asymptotic stability of positive 2D linear systems. In: Proceedings of the 13th Scientific Conference on Computer Applications in Electrical Engineering. Poznan, Poland, 2008. 1-5
  • 加载中
计量
  • 文章访问数:  1227
  • HTML全文浏览量:  75
  • PDF下载量:  745
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-10-11
  • 修回日期:  2013-02-22
  • 刊出日期:  2013-09-20

目录

    /

    返回文章
    返回