2.624

2020影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多智能体最优持久编队动态生成与控制

罗小元 邵士凯 关新平 赵渊洁

罗小元, 邵士凯, 关新平, 赵渊洁. 多智能体最优持久编队动态生成与控制. 自动化学报, 2013, 39(9): 1431-1438. doi: 10.3724/SP.J.1004.2013.01431
引用本文: 罗小元, 邵士凯, 关新平, 赵渊洁. 多智能体最优持久编队动态生成与控制. 自动化学报, 2013, 39(9): 1431-1438. doi: 10.3724/SP.J.1004.2013.01431
LUO Xiao-Yuan, SHAO Shi-Kai, GUAN Xin-Ping, ZHAO Yuan-Jie. Dynamic Generation and Control of Optimally Persistent Formation for Multi-agent Systems. ACTA AUTOMATICA SINICA, 2013, 39(9): 1431-1438. doi: 10.3724/SP.J.1004.2013.01431
Citation: LUO Xiao-Yuan, SHAO Shi-Kai, GUAN Xin-Ping, ZHAO Yuan-Jie. Dynamic Generation and Control of Optimally Persistent Formation for Multi-agent Systems. ACTA AUTOMATICA SINICA, 2013, 39(9): 1431-1438. doi: 10.3724/SP.J.1004.2013.01431

多智能体最优持久编队动态生成与控制

doi: 10.3724/SP.J.1004.2013.01431
基金项目: 

国家重点基础研究发展计划(973计划) (2010CB731800); 国家自然科学基金(61074065);河北省自然科学基金(F2012203119)资助

详细信息
    作者简介:

    罗小元 燕山大学电气工程学院教授.2005年于燕山大学获得博士学位. 主要研究方向为多智能体协调控制,网络系统预测控制. E-mail: xyluo@ysu.edu.cn

Dynamic Generation and Control of Optimally Persistent Formation for Multi-agent Systems

Funds: 

Supported by National Basic Research Program of China (973 Program) (2010CB731800), National Natural Science Foundation of China (61074065), and Natural Science Foundation of Hebei Province (F2012203119)

  • 摘要: 研究了多智能体系统中最优持久编队生成算法,并根据对应的通信拓扑设计了最优持久编队的运动控制算法.首先,提出了基础圈概念,通过有向增加顶点操作,研究了基础圈为三角形或包含部分四边形的最优持久编队的分布式生成算法;在此基础上,考虑到持久编队中单向通信邻居的状态信息,设计了基于距离的最优持久编队运动控制算法.最后,仿真研究验证了所提算法的有效性.
  • [1] Lin P, Jia Y M. Distributed rotating formation control of multi-agent systems. Systems and Control Letters, 2010, 59(10): 587-595
    [2] Hong Y G, Hu J P, Gao L X. Tracking control for multi-agent consensus with an active leader and variable topology. Automatica, 2006, 42(7): 1177-1182
    [3] Lu X Q, Austin F, Chen S H. Flocking in multi-agent systems with active virtual leader and time-varying delays coupling. Communications in Nonlinear Science and Numerical Simulation, 2011, 16(2): 1014-1026
    [4] Luo X Y, Li S B, Guan X P. Flocking algorithm with multi-target tracking for multi-agent systems. Pattern Recognition Letters, 2010, 31(9): 800-805
    [5] Yan J, Guan X P, Luo X Y, Yang X. Consensus and trajectory planning with input constraints for multi-agent systems. Acta Automatica Sinica, 2012, 38(7): 1074-1082
    [6] Yu Hong-Wang, Zheng Yu-Fan. Dynamic behavior of multi-agent systems with distributed sampled control. Acta Automatica Sinica, 2012, 38(3): 357-365(余宏旺, 郑毓蕃. 多智能体系统在分布式采样控制下的动力学行为. 自动化学报, 2012, 38(3): 357-365)
    [7] Olfati-Saber R, Murray R M. Consensus problems in networks of agents with switching topology and time-delays. IEEE Transactions on Automatic Control, 2004, 49(9): 1520-1533
    [8] Ren W, Beard R W. Consensus seeking in multiagent systems under dynamically changing interaction topologies. IEEE Transactions on Automatic Control, 2005, 50(5), 655-661
    [9] Olfati-Saber R. Flocking for multi-agent dynamic systems: algorithms and theory. IEEE Transactions on Automatic Control, 2006, 51(3): 401-420
    [10] Hendrickx J M, Anderson B D O, Blondel V D. Rigidity and persistence of directed graphs. In: Proceedings of the 44th IEEE Conference on Decision and Control. Seville, Spain: IEEE, 2005. 2176-2181
    [11] Laman G. On graphs and rigidity of plane skeletal structures. Journal of Engineering Mathematics, 1970, 4(4): 331-340
    [12] Hendrickx J M, Fidan B, Yu C, Anderson B D O, Blondel V D. Formation reorganization by primitive operations on directed graphs. IEEE Transactions on Automatic Control, 2008, 53(4): 968-979
    [13] Smith B S, Egerstedt M, Howard A. Automatic generation of persistent formations for multi-agent networks under range constraints. Mobile Networks and Applications, 2009, 14(3): 322-335
    [14] Hendrickx J M, Fidan B, Yu C B, Anderson B D O, Blondel V D. Elementary operations for the reorganization of minimally persistent formations. In: Proceedings of the 17th International Symposium on Mathematical Theory of Networks and Systems. Kyoto, Japan: IEEE, 2006. 859-873
    [15] Luo X Y, Li S B, Guan X P. Automatic generation of min-weighted persistent formations. Chinese Physics B, 2009, 18(8): 3104-3114
    [16] Ren R, Zhang Y Y, Luo X Y, Li S B. Automatic generation of optimally rigid formations using decentralized methods. International Journal of Automation and Computing, 2010, 7(4): 557-564
    [17] Anderson B D O, Yu C B, Dasgupta S, Morse A S. Control of a three-coleader formation in the plane. Systems and Control Letters, 2007, 56(9-10): 573-578
    [18] Cao M, Anderson B D O, Morse A S, Yu C B. Control of acyclic formations of mobile autonomous agents. In: Proceedings of the 47th IEEE Conference on Decision and Control. Cancun, Mexico: IEEE, 2008. 1187-1192
    [19] Guo J, Lin Z Y, Cao M, Yan G F. Adaptive leader-follower formation control for autonomous mobile robots. In: Proceedings of the 2010 American Control Conference. Baltimore, USA: AACC, 2010. 6822-6827
    [20] Luo X Y, Liu D, Guan X P, Li S B. Flocking in target pursuit for multi-agent systems with partial informed agents. IET Control Theory and Applications, 2012, 6(4): 560-569
  • 加载中
计量
  • 文章访问数:  1561
  • HTML全文浏览量:  118
  • PDF下载量:  1569
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-04-09
  • 修回日期:  2012-07-25
  • 刊出日期:  2013-09-20

目录

    /

    返回文章
    返回