2.624

2020影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于模糊速度函数的活动轮廓模型的肺结节分割

陈侃 李彬 田联房

陈侃, 李彬, 田联房. 基于模糊速度函数的活动轮廓模型的肺结节分割. 自动化学报, 2013, 39(8): 1257-1264. doi: 10.3724/SP.J.1004.2013.01257
引用本文: 陈侃, 李彬, 田联房. 基于模糊速度函数的活动轮廓模型的肺结节分割. 自动化学报, 2013, 39(8): 1257-1264. doi: 10.3724/SP.J.1004.2013.01257
CHEN Kan, LI Bin, TIAN Lian-Fang. A Segmentation Algorithm of Pulmonary Nodules Using Active Contour Model Based on Fuzzy Speed Function. ACTA AUTOMATICA SINICA, 2013, 39(8): 1257-1264. doi: 10.3724/SP.J.1004.2013.01257
Citation: CHEN Kan, LI Bin, TIAN Lian-Fang. A Segmentation Algorithm of Pulmonary Nodules Using Active Contour Model Based on Fuzzy Speed Function. ACTA AUTOMATICA SINICA, 2013, 39(8): 1257-1264. doi: 10.3724/SP.J.1004.2013.01257

基于模糊速度函数的活动轮廓模型的肺结节分割

doi: 10.3724/SP.J.1004.2013.01257
基金项目: 

国家自然科学基金(61273249);广东省自然科学基金(S2012010009886, S2011010005811);教育部高等学校博士学科点专项科研基金资助项目(200805610018);粤港关键领域重点突破项目(佛山2010Z11);华南理工大学国家人体组织功能重建工程技术研究中心以及广东省生物医学工程重点实验室资助课题;自主系统与网络控制教育部重点实验室资助

详细信息
    作者简介:

    陈侃 华南理工大学自动化科学与工程学院博士研究生. 主要研究方向为医学图像处理与模式识别.E-mail: scut chenkan@126.com

A Segmentation Algorithm of Pulmonary Nodules Using Active Contour Model Based on Fuzzy Speed Function

Funds: 

Supported by National Natural Science Foundation of China (61273249), Natural Science Foundation of Guangdong Province (S2012010009886, S2011010005811), the Specialized Research Fund for the Doctoral Program of Higher Education of China (200805610018), Guangdong-Hong Kong Technology Cooperation Funding (2010Z11), the National Engineering Research Center for Tissue Restoration and Reconstruction and the Guangdong Key Laboratory for Biomedical Engineering (SCUT of China), Key Laboratory of Autonomous Systems and Network Control of Ministry of Education

  • 摘要: 肺结节是肺癌在早期阶段的表现形式. 利用计算机辅助诊断(Computer-aided diagnosis, CAD)技术对血管粘连型肺结节和磨玻璃型肺结节进行检测, 需要对这两类肺结节进行准确的分割. 目前基于传统活动轮廓模型的肺结节分割算法, 存在边界泄露现象. 对此, 本文提出一种基于模糊速度函数的活动轮廓模型的肺结节分割算法. 首先, 采用结合灰度特征和局部形态特征的模糊聚类算法, 计算模糊速度函数中的模糊隶属度; 其次, 将模糊速度函数引入到活动轮廓模型中, 在肺结节的边界处, 该速度函数为零, 轮廓曲线停止演变, 从而完成肺结节的分割. 实验结果表明, 本文提出的算法可以精确地分割血管粘连肺结节和磨玻璃型肺结节.
  • [1] Diciotti S, Picozzi G, Falchimi M, Mascalchi M, Villari N, Valli G. 3-D segmentation algorithm of small lung nodules in spiral CT images. IEEE Transactions on Information Technology in Biomedicine, 2008, 12(1): 7-19
    [2] Papandreou G, Maragos P. Multigrid geometric active contour models. IEEE Transactions on Image Processing, 2007, 16(1): 229-240
    [3] Li C M, Xu C Y, Gui C F, Fox M D. Distance regularized level set evolution and its application to image segmentation. IEEE Transactions on Image Processing, 2010, 19(12): 3243-3254
    [4] Cui H, Gao L Q. Geodesic active contour, inertia and initial speed. Pattern Recognition Letters, 2008, 29(16): 2197-2205
    [5] Tao W B. Iterative narrowband-based graph cuts optimization for geodesic active contours with region forces (GACWRF). IEEE Transactions on Image Processing, 2012, 21(1): 284-296
    [6] Sakalli M, Lam K M, Yan H. A faster converging snake algorithm to locate object boundaries. IEEE Transactions on Image Processing, 2006, 15(5): 1182-1191
    [7] Xiao D, Ng W S, Tsang C B, Abeyratne U R. A region and gradient based active contour model and its application in boundary tracking on anal canal ultrasound images. Pattern Recognition, 2007, 40(12): 3522-3539
    [8] Sun K Q, Chen Z, Jiang S F. Local morphology fitting active contour for automatic vascular segmentation. IEEE Transactions on Biomedical Engineering, 2012, 59(2): 464-473
    [9] Li C M, Huang R, Ding Z H, Gatenby J C, Metaxax D N, Gore J C. A level set method for image segmentation in the presence of intensity inhomogeneities with application to MRI. IEEE Transactions on Image Processing, 2011, 20(7): 2007-2015
    [10] Liu S G, Peng Y L. A local region-based Chan-Vese model for image segmentation. Pattern Recognition, 2012, 45(7): 2769-2779
    [11] Lankton S, Tannenbaum A. Localizing region-based active contours. IEEE Transactions on Image Processing, 2008, 17(11): 2029-2039
    [12] Sum K W, Cheung P Y S. Vessel extraction under non-uniform illumination: a level set approach. IEEE Transactions on Biomedical Engineering, 2008, 55(1): 358-360
    [13] Li C M, Kao C Y, Gore J C, Ding Z H. Minimization of region-scalable fitting energy for image segmentation. IEEE Transactions on Image Processing, 2008, 17(10): 1940-1949
    [14] Wang L, He L, Mishra A, Li C M. Active contours driven by local Gaussian distribution fitting energy. Signal Processing, 2009, 89(12): 2435-2447
    [15] Krinidis S, Chatzis V. Fuzzy energy-based active contours. IEEE Transactions on Image Processing, 2009, 18(12): 2747-2755
    [16] Zhang Y, Li G Y, Sun X H, Zhou X M. Geometric active contours without re-initialization for image segmentation. Pattern Recognition, 2009, 42(9): 1970-1976
    [17] Chen L, Zhou Y, Wang Y G, Yang J. GACV: geodesic-aided C-V method. Pattern Recognition, 2006, 39(7): 1391-1395
    [18] Sluimer I, Schilham A, Prokop M, Van Ginneken B. Computer analysis of computed tomography scans of the lung: a survey. IEEE Transactions on Medical Imaging, 2006, 25(4): 385-405
    [19] Ye X J, Lin X Y, Dehmeshki J, Slabaugh G, Beddoe G. Shape-based computer-aided detection of lung nodules in thoracic CT images. IEEE Transactions on Biomedical Engineering, 2009, 56(7): 1810-1820
    [20] Hwang C, Rhee F C H. Uncertain fuzzy clustering: interval type-2 fuzzy approach to C-means. IEEE Transactions on Fuzzy Systems, 2007, 15(1): 107-120
    [21] Bloch I. Duality vs. adjunction for fuzzy mathematical morphology and general form of fuzzy erosions and dilations. Fuzzy Sets and Systems, 2009, 160(13): 1858-1867
    [22] Zhang K H, Song H H, Zhang L. Active contours driven by local image fitting energy. Pattern Recognition, 2010, 43(4): 1199-1206
    [23] Armato S G III, McLennan G, Bidaut L, McNitt-Gray M F, Meyer C R, Reeves A P, Zhao B, Aberle D R, Henschke C I, Hoffman E A, Kazerooni E A, MacMahon H, Van Beeke E J, Yankelevitz D, Biancardi A M, Bland P H, Brown M S, Engelmann R M, Laderach G E, Max D, Pais R C, Qing D P, Roberts R Y, Smith A R, Starkey A, Batrah P, Caligiuri P, Farooqi A, Gladish G W, Jude C M, Munden R F, Petkovska I, Quint L E, Schwartz L H, Sundaram B, Dodd L E, Fenimore C, Gur D, Petrick N, Freymann J, Kirby J, Hughes B, Casteele A V, Gupte S, Sallamm M, Heath M D, Kuhn M H, Dharaiya E, Burns R, Fryd D S, Salganicoff M, Anand V, Shreter U, Vastagh S, Croft B Y. The lung image database consortium (LIDC) and image database resource initiative (IDRI): a completed reference database of lung nodules on CT scans. Medical Physics, 2011, 38(2): 915-931
  • 加载中
计量
  • 文章访问数:  1268
  • HTML全文浏览量:  68
  • PDF下载量:  1320
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-06-18
  • 修回日期:  2012-10-31
  • 刊出日期:  2013-08-20

目录

    /

    返回文章
    返回