2.624

2020影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

窄带主动轮廓模型及在医学和纹理图像局部分割中的应用

郑强 董恩清

郑强, 董恩清. 窄带主动轮廓模型及在医学和纹理图像局部分割中的应用. 自动化学报, 2013, 39(1): 21-30. doi: 10.3724/SP.J.1004.2013.00021
引用本文: 郑强, 董恩清. 窄带主动轮廓模型及在医学和纹理图像局部分割中的应用. 自动化学报, 2013, 39(1): 21-30. doi: 10.3724/SP.J.1004.2013.00021
ZHENG Qiang, DONG En-Qing. Narrow Band Active Contour Model for Local Segmentation of Medical and Texture Images. ACTA AUTOMATICA SINICA, 2013, 39(1): 21-30. doi: 10.3724/SP.J.1004.2013.00021
Citation: ZHENG Qiang, DONG En-Qing. Narrow Band Active Contour Model for Local Segmentation of Medical and Texture Images. ACTA AUTOMATICA SINICA, 2013, 39(1): 21-30. doi: 10.3724/SP.J.1004.2013.00021

窄带主动轮廓模型及在医学和纹理图像局部分割中的应用

doi: 10.3724/SP.J.1004.2013.00021
详细信息
    通讯作者:

    董恩清

Narrow Band Active Contour Model for Local Segmentation of Medical and Texture Images

  • 摘要: 提出一种新的基于二值水平集的窄带主动轮廓模型用于局部分割.通过对二值水平集进行形态学膨胀和腐蚀操作, 提出一种稳定灵活可控的窄带控制方案,该方案可使得曲线进化精度从一个像素宽度灵活变化到任意大小. 考虑到局部分割一般要求初始轮廓置于待分割目标内部并不断膨胀进化直至目标边缘,本文提出用形态学闭运算作为新的曲线平滑方案. 与传统的高斯平滑和曲率平滑方案相比,形态学闭运算不仅能够更好地促进曲线的膨胀进化,而且有利于保持水平集函数的二值性. 此外,本文提出的方法是一种通用的自然框架,可以根据不同的需求设计不同的速度函数. 为了证明所提出的局部分割框架的有效性和鲁棒性,本文以医学图像和纹理图像为例分别设计了两个速度函数: 一个是融合了磁共振脑图像的非严格对称信息的速度函数用于大脑皮质下结构的局部分割;另一个是融合了局部熵和局部梯 度算子的速度函数用于纹理图像的局部分割. 在合成图像、医学图像和纹理图像上的实验证明了本文方法在局部分割中的有效性和鲁棒性.
  • [1] Jayadevappa D, Kumar S S, Murty D S. Medical image segmentation algorithms using deformable models: a review. IETE Technical Review, 2011, 28(3): 248-255[2] Caselles V, Kimmel R, Sapiro G. Geodesic active contours. In: Proceedings of the 1995 International Conference on Computer Vision. Massachusetts, USA: IEEE, 1995. 694-699[3] Caselles V, Kimmel R, Sapiro G. Geodesic active contours. International Journal of Computer Vision, 1997, 22(1): 61-79[4] Li C M, Xu C Y, Gui C F, Fox M D. Level set evolution without re-initialization: a new variational formulation. In: Proceedings of the 2005 IEEE Conference on Computer Vision and Pattern Recognition. San Diego, USA: IEEE, 2005. 430-436[5] Zhu G P, Zhang S Q, Zeng Q S, Wang C H. Boundary-based image segmentation using binary level set method. Optical Engineering, 2007, 46(5): 0505011-0505013[6] Li C M, Xu C Y, Gui C F, Fox M D. Distance regularized level set evolution and its application to image segmentation. IEEE Transactions on Image Processing, 2010, 19(12): 3243-3254[7] Mumford D, Shah J. Optimal approximations by piecewise smooth functions and associated variational problems. Communications on Pure and Applied Mathematics, 1989, 42(5): 577-685[8] Chan T F, Vese L A. Active contours without edges. IEEE Transactions on Image Processing, 2001, 10(2): 266-277[9] Vese L A, Chan T F. A multiphase level set framework for image segmentation using the Mumford and Shah model. International Journal of Computer Vision, 2002, 50(3): 271-293[10] Lie J, Lysaker M, Tai X C. A binary level set model and some applications to Mumford-Shah image segmentation. IEEE Transactions on Image Processing, 2006, 15(5): 1171-1181[11] Goudail F, Réfrégier P. Target segmentation in active polarimetric images by use of statistical active contours. Applied Optics, 2002, 41(5): 874-883[12] Li C M, Kao C Y, Gore J C, Ding Z H. Implicit active contours driven by local binary fitting energy. In: Proceedings of the 2007 IEEE Conference on Computer Vision and Pattern Recognition. Minneapolis, USA: IEEE, 2007. 1-9[13] Li C M, Kao C Y, Gore J C, Ding Z H. Minimization of region-scalable fitting energy for image segmentation. IEEE Transactions on Image Processing, 2008, 17(10): 1940-1949[14] Zhang K H, Song H H, Zhang L. Active contours driven by local image fitting energy. Pattern Recognition, 2010, 43(4): 1199-1206[15] Wang X F, Huang D S, Xu H. An efficient local Chan-Vese model for image segmentation. Pattern Recognition, 2010, 43(3): 603-618[16] Li C M, Huang R, Ding Z H, Gatenby C, Metaxas D, Gore J. A variational level set approach to segmentation and bias correction of images with intensity inhomogeneity. In: Proceedings of 11th International Conference on Medical Image Computing and Computer-Assisted Intervention. Berlin, Heidelberg: IEEE, 2008. 1083-1091[17] Zhang K H, Zhang L, Zhang S. A variational multiphase level set approach to simultaneous segmentation and bias correction. In: Proceedings of 17th IEEE International Conference on Image Processing. Hong Kong, China: IEEE, 2010. 4105-4108[18] Li C M, Huang R, Ding Z H, Gatenby J C, Metaxas D N, Gore J C. A level set method for image segmentation in the presence of intensity inhomogeneities with application to MRI. IEEE Transactions on Image Processing, 2011, 20(7): 2007-2016[19] Lankton S, Tannenbaum A. Localizing region-based active contours. IEEE Transactions on Image Processing, 2008, 17(11): 2029-2039[20] Mille J. Narrow band region-based active contours and surfaces for 2D and 3D segmentation. Computer Vision and Image Understanding, 2009, 113(9): 946-965[21] Wang Y, Lin Z X, Cao J G, Li M Q. Automatic MRI brain tumor segmentation system based on localizing active contour models. In: Proceedings of the 2011 International Conference on Information Science, Automation and Material System. Zhengzhou, China: IEEE, 2011. 1342-1346[22] Shi Y G, Karl W C. A real-time algorithm for the approximation of level set-based curve evolution. IEEE Transactions on Image Processing, 2008, 17(5): 645-656[23] Burkert F, Butenuth M, Ulrich M. Real-time object detection with sub-pixel accuracy using the level set method. The Photogrammetric Record, 2011, 26(134): 154-170[24] Zhang K H, Zhang L, Song H H, Zhou W G. Active contours with selective local or global segmentation: a new formulation and level set method. Image and Vision Computing, 2010, 28(4): 668-676[25] Tran T T, Pham V T, Chiu Y J, Shyu K K. Active contour with selective local or global segmentation for intensity inhomogeneous image. In: Proceedings of the 3rd IEEE International Conference on Computer Science and Information Technology. Chengdu, China: IEEE, 2010. 306-310[26] Li W B, Song S H, Qian X. Active contours with selective local or global segmentation property for multiobject image. Optical Engineering, 2011, 50(6): 067009[27] Riklin-Raviv T, Kiryati N, Sochen N. Segmentation by level sets and symmetry. In: Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. New York, USA: IEEE, 2006. 1015-1022[28] Wang H, Dong L, O'Daniel J, Mohan R, Garden A S, Ang K K, Kuban D A, Bonnen M, Chang J Y, Cheung R. Validation of an accelerated ''demons'' algorithm for deformable image registration in radiation therapy. Physics in Medicine and Biology, 2005, 50(12): 2887-2905[29] Liu J, Tai X C, Huang H Y, Huan Z D. A fast segmentation method based on constraint optimization and its applications: intensity inhomogeneity and texture segmentation. Pattern Recognition, 2011, 44(9): 2093-2108[30] Cremers D, Rousson M, Deriche R. A review of statistical approaches to level set segmentation: integrating color, texture, motion and shape. International Journal of Computer Vision, 2007, 72(2): 195-215[31] Guo Z H, Zhang L, Zhang D. A completed modeling of local binary pattern operator for texture classification. IEEE Transactions on Image Processing, 2010, 19(6): 1657-1663[32] Houhou N, Thiran J P, Bresson X. Fast texture segmentation based on semi-local region descriptor and active contour. Numerical Mathematics Theory Methods and Applications, 2009, 2(4): 445-468[33] Law Y N, Lee H K, Yip A M. Subspace learning for Mumford-Shah-model-based texture segmentation through texture patches. Applied Optics, 2011, 50(21): 3947-3957
  • 加载中
计量
  • 文章访问数:  1767
  • HTML全文浏览量:  49
  • PDF下载量:  1046
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-01-17
  • 修回日期:  2012-06-07
  • 刊出日期:  2013-01-20

目录

    /

    返回文章
    返回