2.765

2022影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于测地距离的支持向量机分类算法

全勇 杨杰

全勇, 杨杰. 基于测地距离的支持向量机分类算法. 自动化学报, 2005, 31(2): 202-208.
引用本文: 全勇, 杨杰. 基于测地距离的支持向量机分类算法. 自动化学报, 2005, 31(2): 202-208.
QUAN Yong, YANG Jie. Geodesic Distance for Support Vector Machines. ACTA AUTOMATICA SINICA, 2005, 31(2): 202-208.
Citation: QUAN Yong, YANG Jie. Geodesic Distance for Support Vector Machines. ACTA AUTOMATICA SINICA, 2005, 31(2): 202-208.

基于测地距离的支持向量机分类算法

详细信息
    通讯作者:

    全勇

Geodesic Distance for Support Vector Machines

More Information
    Corresponding author: QUAN Yong
  • 摘要: When dealing with pattern recognition problems one encounters different types of prior knowledge. It is important to incorporate such knowledge into classification method at hand. A very common type of prior knowledge is many data sets are on some kinds of manifolds. Distance based classification methods can make use of this by a modified distance measure called geodesic distance. We introduce a new kind of kernels for support vector machines which incorporate geodesic distance and therefore are applicable in cases such transformation invariance is known. Experiments results show that the performance of our method is comparable to that of other state-of-the-art method.
  • 加载中
计量
  • 文章访问数:  3102
  • HTML全文浏览量:  74
  • PDF下载量:  1587
  • 被引次数: 0
出版历程
  • 收稿日期:  2003-06-20
  • 修回日期:  2004-03-23
  • 刊出日期:  2005-03-20

目录

    /

    返回文章
    返回