不变根分布的多项式的最大摄动界
Maximal Perturbation Bounds for Invariant Root Distribution of Polynomials
-
摘要: 已知不确定的特征多项式p(s,q),其系数依赖于参数向量q,一个富有意义的问题是: 可以允许q摄动多大而使摄动后的多项式仍保持标称多项式p(s,0)所具有的惯性(亦称根 分布)数?这就是所谓不变根分布的多项式的最大摄动界问题.本文将就仿射线性及仿射双 线性两情况给出上述问题的解答与算法.Abstract: Given an uncertain characteristic polynomial p(s, q) whose coefficients depend on a parameter vector q. A meaningful question is how large perturbation for vector q can be permitted so that the perturbed polynomial preserves the same root distribution with the nominal polynomial p(s,0). This is called the maximal perturbation bounds for invariant root distribution of polynomials. For affine linear and bilinear perturbation cases this paper gives the answers and an algorithm for the above question.
计量
- 文章访问数: 1973
- HTML全文浏览量: 59
- PDF下载量: 1480
- 被引次数: 0