2.765

2022影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于切换频度的马尔科夫网络控制系统均方指数镇定

宋杨 董豪 费敏锐

宋杨, 董豪, 费敏锐. 基于切换频度的马尔科夫网络控制系统均方指数镇定. 自动化学报, 2012, 38(5): 876-881. doi: 10.3724/SP.J.1004.2012.00876
引用本文: 宋杨, 董豪, 费敏锐. 基于切换频度的马尔科夫网络控制系统均方指数镇定. 自动化学报, 2012, 38(5): 876-881. doi: 10.3724/SP.J.1004.2012.00876
SONG Yang, DONG Hao, FEI Min-Rui. Mean Square Exponential Stabilization of Markov Networked Control Systems Based on Switching Frequentness. ACTA AUTOMATICA SINICA, 2012, 38(5): 876-881. doi: 10.3724/SP.J.1004.2012.00876
Citation: SONG Yang, DONG Hao, FEI Min-Rui. Mean Square Exponential Stabilization of Markov Networked Control Systems Based on Switching Frequentness. ACTA AUTOMATICA SINICA, 2012, 38(5): 876-881. doi: 10.3724/SP.J.1004.2012.00876

基于切换频度的马尔科夫网络控制系统均方指数镇定

doi: 10.3724/SP.J.1004.2012.00876
详细信息
    通讯作者:

    宋杨, 上海大学机电工程与自动化学院副研究员. 主要研究方向为切换系统, 网络控制理论与应用.

Mean Square Exponential Stabilization of Markov Networked Control Systems Based on Switching Frequentness

  • 摘要: 针对一类马尔科夫网络控制系统(Networked control system, NCS),研究了其均方指数镇定问题. 首先将网络控制系统建模为离散时间切换系统,子系统间的切换过程由一个转移概率矩阵已知的马尔科夫链描述, 并给出了子系统间切换频度的范围;进而基于随机过程理论和切换系统稳定性理论, 利用状态反馈实现了网络控制系统均方指数镇定,状态反馈控制律可通过求解一组线性矩阵不等式获得. 最后通过数值仿真例子验证了本文方法的有效性.
  • [1] Gupta R A, Chow M Y. Networked control system: overview and research trends. IEEE Transactions on Industrial Electronics, 2010, 57(7): 2527-2535[2] Yang T C. Networked control system: a brief survey. IEE Proceedings-Control Theory Applications, 2006, 153(4): 403-412[3] Du Da-Jun, Fei Min-Rui, Song Yang, Li Xue. Brief survey and prospect of networked control systems. Chinese Journal of Scientific Instrument, 2011, 32(3): 713-720 (杜大军, 费敏锐, 宋杨, 李雪. 网络控制系统的简要回顾及展望. 仪器仪表学报, 2011, 32(3): 713-720)[4] Song Y, Fan J, Fei M R, Yang T C. Robust H∞ control of discrete switched system with time delay. Applied Mathematics and Computation, 2008, 205(1): 159-169[5] Zhang W A, Yu L. Output feedback stabilization of networked control systems with packet dropouts. IEEE Transactions on Automatic Control, 2007, 52(9): 1705-1710[6] Sun X M, Liu G P, Wang W, David R. Stability analysis for networked control systems based on average dwell time method. International Journal of Robust and Nonlinear Control, 2010, 20(15): 1774-1784[7] Niu Y G, Jia T G, Wang X Y, Yang F W. Output-feedback control design for NCSs subject to quantization and dropout. Information Sciences, 2009, 179(21): 3804-3813[8] Nilsson J. Real-time Control Systems with Delays [Ph.D. dissertation], Lund Institute of Technology, Sweden, 1998[9] Ma Wei-Guo, Shao Cheng. Stochastic stability for networked control systems. Acta Automatica Sinica, 2007, 33(8): 878-882 (马卫国, 邵诚. 网络控制系统随机稳定性研究. 自动化学报, 2007, 33(8): 878-882)[10] Shi Y, Yu B. Output feedback stabilization of networked control systems with random delays modeled by Markov chains. IEEE Transactions on Automatic Control, 2009, 54(7): 1668-1674[11] Ge Y, Chen Q G, Jiang M, Liu Z A. Stability analysis of networked control systems based on hidden Markov models. Chinese Journal of Scientific Instrument, 2008, 29(2): 273- 278[12] Li Q L. Constructive Computation in Stochastic Models with Applications: The RG-Factorizations. Berlin: Springer-Verlag, 2010. 2-11[13] Ross S M. Stochastic Processes. New York: John Wiley, 1983. 258-260[14] Liu Yuan-Yuan. Ergodic Theory of Markov Processes and Its Applications [Ph.D. dissertation], Central South University, China, 2006 (刘源远. 马氏过程的遍历性理论及其应用 [博士学位论文]. 中南大学, 中国, 2006)[15] He Jian, Bai Guang-Wei. Performance study of S-MAC protocol in wireless sensor network. Computer Engineering, 2010, 36(24): 87-89 (何剑, 白光伟. 无线传感器网络S-MAC 协议性能研究. 计算机工程, 2010, 36(24): 87-89)[16] Bai Xiang, Mao Yu-Ming. Performance investigation of IEEE802.11e EDCA based on the M/G/1/K queue model. Journal of Electronics and Information Technology, 2008, 30(7): 1610-1614(白翔, 毛玉明. 基于M/G/1/K 排队模型的IEEE802.11e EDCA 性能研究. 电子与信息学报, 2008, 30(7): 1610-1614)[17] Rubino G, Sericola B. Sojourn times in finite Markov processes. Journal of Applied Probability, 1989, 26(4): 744-756[18] Ji Y, Chizeck H J, Feng X, Loparo K A. Stability and control of discrete-time jump linear systems. Control Theory and Advanced Technology, 1991, 7(2): 247-270[19] Wang Y Y, Xie L H, De Souza C E. Robust control of a class of uncertain nonlinear systems. Systems and Control Letters, 1992, 19(2): 139-149
  • 加载中
计量
  • 文章访问数:  2228
  • HTML全文浏览量:  67
  • PDF下载量:  1004
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-07-21
  • 修回日期:  2011-12-11
  • 刊出日期:  2012-05-20

目录

    /

    返回文章
    返回