2.765

2022影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑伺服系统增益不确定的船舶动力定位自适应有限时间控制

张国庆 黄晨峰 吴晓雪 张显库

张国庆, 黄晨峰, 吴晓雪, 张显库. 考虑伺服系统增益不确定的船舶动力定位自适应有限时间控制. 自动化学报, 2018, 44(10): 1907-1912. doi: 10.16383/j.aas.2017.c170111
引用本文: 张国庆, 黄晨峰, 吴晓雪, 张显库. 考虑伺服系统增益不确定的船舶动力定位自适应有限时间控制. 自动化学报, 2018, 44(10): 1907-1912. doi: 10.16383/j.aas.2017.c170111
ZHANG Guo-Qing, HUANG Chen-Feng, WU Xiao-Xue, ZHANG Xian-Ku. Adaptive Finite Time Dynamic Positioning Control of Fully-actuated Ship With Servo System Uncertainties. ACTA AUTOMATICA SINICA, 2018, 44(10): 1907-1912. doi: 10.16383/j.aas.2017.c170111
Citation: ZHANG Guo-Qing, HUANG Chen-Feng, WU Xiao-Xue, ZHANG Xian-Ku. Adaptive Finite Time Dynamic Positioning Control of Fully-actuated Ship With Servo System Uncertainties. ACTA AUTOMATICA SINICA, 2018, 44(10): 1907-1912. doi: 10.16383/j.aas.2017.c170111

考虑伺服系统增益不确定的船舶动力定位自适应有限时间控制

doi: 10.16383/j.aas.2017.c170111
基金项目: 

辽宁省博士启动基金项目 20170520189

中央高校基本科研业务费专项资金资助项目 3132018301

中央高校基本科研业务费专项资金资助项目 3132018304

国家自然科学基金 51679024

中国博士后创新人才支持计划 BX201600103

辽宁省自然科学基金 20180520039

教育部"创新团队发展计划"资助项目 IRT17R13

详细信息
    作者简介:

    张国庆  博士, 大连海事大学副教授, 上海交通大学博士后.主要研究方向为自适应控制, 非线性控制, 船舶运动控制.E-mail:zgq dlmu@163.com

    黄晨峰  大连海事大学博士研究生.主要研究方向为鲁棒控制, 非线性控制及船舶运动控制.E-mail:chenfengh@outlook.com

    吴晓雪  大连海洋大学信息工程学院讲师.主要研究方向为水面船舶运动建模, 非线性控制.E-mail:wxxue@dlou.edu.cn

    通讯作者:

    张显库  大连海事大学航海学院教授.主要研究方向为船舶运动控制, 鲁棒控制.本文通信作者.E-mail:zhangxk@dlmu.edu.cn

Adaptive Finite Time Dynamic Positioning Control of Fully-actuated Ship With Servo System Uncertainties

Funds: 

Doctoral Scientific Research Foundation of Liaoning Province 20170520189

the Fundamental Research Funds for the Central Universities 3132018301

the Fundamental Research Funds for the Central Universities 3132018304

National Natural Science Foundation of China 51679024

National Postdoctoral Program for Innovative Talents BX201600103

Natural Science Foundation of Liaoning Province 20180520039

the Program for Innovative Research Team in University IRT17R13

More Information
    Author Bio:

     Ph. D, associate professor at Dalian Maritime University, postdoctoral at Shanghai Jiao Tong University. His current research interest covers adaptive control, nonlinear control and their application on the intelligent transportation system

     Ph. D, associate professor at Dalian Maritime University, postdoctoral at Shanghai Jiao Tong University. His current research interest covers adaptive control, nonlinear control and their application on the intelligent transportation system

     Lecturer at the College of Information Engineering, Dalian Ocean University. Her research interest covers modeling, nonlinear control for marine surface ships

    Corresponding author: ZHANG Xian-Ku  Professor at the Navigation College, Dalian Maritime University. His research interest covers ship motion control, robust control. Corresponding author of this paper
  • 摘要: 针对全驱动水面船舶动力定位控制问题,假设船舶模型参数摄动和外部扰动的上界已知,通过构造误差信号的非奇异终端滑模面(Non-singular terminal sliding mode,NTSM)提出了一种自适应终端滑模的控制方法.同时考虑伺服系统增益不确定问题,对未知的推力系数矩阵的倒数进行参数自适应,确保设计的控制器能使得船舶的位置及艏向角在有限时间内收敛于期望值,且能保证闭环系统实际有限时间稳定(Practical finite-time stable,PFS).利用一艘供给船进行数值仿真研究,说明了设计的船舶动力定位自适应终端滑模控制律的有效性.
    1)  本文责任编委 季海波
  • 图  1  供给船推进器布局图

    Fig.  1  Thruster configuration diagram for the supply vessel

    图  2  船舶的位置和艏向角$x$, $y$, $\psi$历时变化曲线

    Fig.  2  Position and orientation variables $x$, $y$, $\psi $ under different control laws

    图  3  船舶速度$u$, $v$, $r$历时变化曲线

    Fig.  3  The kinematic variables $u$, $v$, $r$ under different control laws

    图  4  船舶动力定位控制律历时变化曲线

    Fig.  4  Curves of ship dynamic positioning control laws

    图  5  增益不确定估计参数$\hat{\lambda}_1$, $\hat{\lambda}_2$, $\hat{\lambda}_3$, $\hat{\lambda}_4$历时变化曲线

    Fig.  5  Curves of estimations for gain\\ uncertainties $\hat{\lambda}_1$, $\hat{\lambda}_2$, $\hat{\lambda}_3$, $\hat{\lambda}_4$

    图  6  执行器螺距控制输入历时变化曲线

    Fig.  6  Curves of the propeller pitch of actuators

  • [1] El-Hawary F. The Ocean Engineering Handbook. Boca Raton:CRC Press, 2001. 167-170
    [2] 周利, 王磊, 陈恒.动力定位控制系统研究.船海工程, 2008, 37(2):86-91 doi: 10.3963/j.issn.1671-7953.2008.02.025

    Zhou Li, Wang Lei, Chen Heng. Review on the study of dynamic positioning control system for vessels. Ship and Ocean Engineering, 2008, 37(2):86-91 doi: 10.3963/j.issn.1671-7953.2008.02.025
    [3] 赵大威, 边信黔, 丁福光.非线性船舶动力定位控制器设计.哈尔滨工程大学学报, 2011, 32(1):57-61 doi: 10.3969/j.issn.1006-7043.2011.01.011

    Zhao Da-Wei, Bian Xin-Qian, Ding Fu-Guang. Design of a nonlinear controller for dynamic ship positioning. Journal of Harbin Engineering University, 2011, 32(1):57-61 doi: 10.3969/j.issn.1006-7043.2011.01.011
    [4] Ghommam J, Minf F, Derbel N. Global stabilisation and tracking control of underactuated surface vessels. IET Control Theory and Applications, 2010, 4(1):71-88 doi: 10.1049/iet-cta.2008.0131
    [5] Fang M C, Lee Z Y. Portable dynamic positioning control system on a barge in short-crested waves using the neural network algorithm. China Ocean Engineering, 2013, 27(4):469-480 doi: 10.1007/s13344-013-0040-x
    [6] Fossen T I. Handbook of Marine Craft Hydrodynamics and Motion Control. Hoboken, NJ, USA: Wiley, 2011. 152-158
    [7] Zhang G Q, Zhang X K. A novel DVS guidance principle and robust adaptive path-following control for underactuated ships using low frequency gain-learning. ISA Transactions, 2015, 56:75-85 doi: 10.1016/j.isatra.2014.12.002
    [8] Do K D. Global robust and adaptive output feedback control for a marine dynamic positioning of surface ships. Journal of Marine Science and Application, 2011, 10(3):325-332 doi: 10.1007/s11804-011-1076-z
    [9] Du J L, Hu X, Liu H B, Chen C L P. Adaptive robust output feedback control for a marine dynamic positioning system based on a high-gain observer. IEEE Transactions on Neural Networks and Learning Systems, 2015, 26(11):2775-2786 doi: 10.1109/TNNLS.2015.2396044
    [10] 王元慧, 隋玉峰, 吴静.基于非线性模型预测的船舶动力定位控制器设计.哈尔滨工程大学学报, 2013, 34(1):110-115 http://d.old.wanfangdata.com.cn/Periodical/hebgcdxxb201301018

    Wang Yuan-Hui, Sui Yu-Feng, Wu Jing. Marine dynamic position system based on nonlinear model predictive control. Journal of Harbin Engineering University, 2013, 34(1):110-115 http://d.old.wanfangdata.com.cn/Periodical/hebgcdxxb201301018
    [11] Hassani V, Sorensen A J, Pascoal A M, Aguiar A P. Multiple model adaptive wave filtering for dynamic positioning of marine vessels. In: Proceedings of the 2012 American Control Conference (ACC). Montreal, Canada: IEEE, 2012. 6222-6228
    [12] Grovlen A, Fossen T I. Nonlinear control of dynamic positioned ships using only position feedback: an observer backstepping approach. In: Proceedings of the 35th IEEE Conference on Decision and Control. Kobe, Japan: IEEE, 1996, 3: 3388-3393
    [13] Feng Y, Yu X H, Man Z H. Non-singular terminal sliding mode control of rigid manipulators. Automatica, 2002, 38(12):2159-2167 doi: 10.1016/S0005-1098(02)00147-4
    [14] Wang L Y, Chai T Y, Zhai L F. Neural-network-based terminal sliding-mode control of robotic manipulators including actuator dynamics. IEEE Transactions on Industrial Electronics, 2009, 56(9):3296-3304 doi: 10.1109/TIE.2008.2011350
    [15] 穆朝絮, 余星火, 孙长银.非奇异终端滑模控制系统相轨迹和暂态分析.自动化学报, 2013, 39(6):902-908 http://www.aas.net.cn/CN/abstract/abstract18117.shtml

    Mu Chao-Xu, Yu Xing-Huo, Sun Chang-Yin. Phase trajectory and transient analysis for nonsingular terminal sliding mode control systems. Acta Automatica Sinica, 2013, 39(6):902-908 http://www.aas.net.cn/CN/abstract/abstract18117.shtml
    [16] Bhat S P, Bernstein D S. Finite-time stability of continuous autonomous systems. SIAM Journal on Control and Optimization, 2000, 38(3):751-766 doi: 10.1137/S0363012997321358
    [17] 李世华, 丁世宏, 田玉平.一类二阶非线性系统的有限时间状态反馈镇定方法.自动化学报, 2007, 33(1):101-104 http://www.aas.net.cn/CN/abstract/abstract13811.shtml

    Li Shi-Hua, Ding Shi-Hong, Tian Yu-Ping. A finite-time state feedback stabilization method for a class of second order nonlinear systems. Acta Automatica Sinica, 2007, 33(1):101-104 http://www.aas.net.cn/CN/abstract/abstract13811.shtml
    [18] 张瑶, 马广富, 郭延宁, 曾添一.一种多幂次滑模趋近律设计与分析.自动化学报, 2016, 42(3):466-472 http://www.aas.net.cn/CN/abstract/abstract18834.shtml

    Zhang Yao, Ma Guang-Fu, Guo Yan-Ning, Zeng Tian-Yi. A multi power reaching law of sliding mode control design and analysis. Acta Automatica Sinica, 2016, 42(3):466-472 http://www.aas.net.cn/CN/abstract/abstract18834.shtml
    [19] Chen W S, Jiao L C. Adaptive tracking for periodically time-varying and nonlinearly parameterized systems using multilayer neural networks. IEEE Transactions on Neural Networks, 2010, 21(2):345-351 doi: 10.1109/TNN.2009.2038999
    [20] How B V E, Ge S S, Choo Y S. Dynamic load positioning for subsea installation via adaptive neural control. IEEE Journal of Oceanic Engineering, 2010, 35(2):366-375 doi: 10.1109/JOE.2010.2041261
    [21] He W, Dong Y T, Sun C Y. Adaptive neural impedance control of a robotic manipulator with input saturation. IEEE Transactions on Systems, Man, and Cybernetics:Systems, 2016, 46(3):334-344 doi: 10.1109/TSMC.2015.2429555
  • 加载中
图(6)
计量
  • 文章访问数:  1975
  • HTML全文浏览量:  187
  • PDF下载量:  559
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-03-02
  • 录用日期:  2017-08-02
  • 刊出日期:  2018-10-20

目录

    /

    返回文章
    返回