Research Progress on Modeling and Control of Flapping-wing Air Vehicles
HE Wei1, DING Shi-Qiang2, SUN Chang-Yin3
1. School of Automation and Electrical Engineering, University of Science and Technology Beijing, Beijing 100083; 2. Center for Robotics, School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 611731; 3. School of Automation, Southeast University, Nanjing 210096
摘要 扑翼飞行器(Flapping-wing air vehicle,FAV)即通过模拟昆虫以及鸟类飞行方式而制造的仿生机器人.与常见的固定翼和旋翼飞行器相比,具有效率高、质量轻、机动性强、耗能低等显著优点,是飞行器发展的重要方向.关于扑翼机的研究始于上世纪后期,现如今从理论探索到机体开发都有了可喜的成果.本文首先介绍了世界领先的几款扑翼飞行器的特点,接着简述了扑翼飞行器在动力学、能源、控制等方面的发展现状,并对未来的研究方向做出了展望.
Abstract:The flapping-wing air vehicle (FAV) is a sort of bionic-robot, which simulates insect and bird flight. Comparing with fixed and rotary-wing aircraft, FAV is characterized by efficiency, low mass, high flexibility and energy conservation, and is a major trend of the aircraft development. The study of FAV can date from the end of 20th century. And now, great achievements have been made both in the theoretical research and modeling. This overview introduces the characters of the leading FAVs in the world, followed by an overlook and outlook of the aerodynamics, energy-supply and control problem for FAVs.
贺威, 丁施强, 孙长银. 扑翼飞行器的建模与控制研究进展. 自动化学报, 2017, 43(5): 685-696.
HE Wei, DING Shi-Qiang, SUN Chang-Yin. Research Progress on Modeling and Control of Flapping-wing Air Vehicles. Acta Automatica Sinica, 2017, 43(5): 685-696.
[1] Keennon M, Klingebiel K, Won H, Andriukov A. Development of the Nano hummingbird: a tailless flapping wing micro air vehicle. In: Proceedings of the 50th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Reston, VA, USA: AIAA, 2012. 1-24 [2] Jackowski Z J. Design and Construction of an Autonomous Ornithopter [Ph.D. dissertation], Massachusetts Institute of Technology, USA, 2009. [3] Ma K Y, Chirarattananon P, Fuller S B, Wood R J. Controlled flight of a biologically inspired, insect-scale robot. Science, 2013, 340(6132): 603-607 [4] Mackenzie D. A flapping of wings. Science, 2012, 335(6075): 1430-1433 [5] Paranjape A A, Chung S J, Kim J. Novel dihedral-based control of flapping-wing aircraft with application to perching. IEEE Transactions on Robotics, 2013, 29(5): 1071-1084 [6] Krashanitsa R Y, Silin D, Shkarayev S V, Abate G. Flight dynamics of a flapping-wing air vehicle. International Journal of Micro Air Vehicles, 2009, 1(1): 35-49 [7] Park J H, Yoon K J, Park H C. Development of bio-mimetic composite wing structures and experimental study on flapping characteristics. In: Proceedings of the 2007 IEEE International Conference on Robotics and Biomimetics. Sanya, China: IEEE, 2007. 25-30 [8] Pornsin-sirirak T N, Tai Y C, Nassef H, Ho C M. Titanium-alloy MEMS wing technology for a micro aerial vehicle application. Sensors and Actuators A: Physical, 2001, 89(1-2): 95-103 [9] De Croon G C H E, Persin M, Remes B D W, Ruijsink R, De Wagter C. The DelFly. Netherlands: Springer, 2016. [10] Phan H V, Truong Q T, Park H C. Implementation of initial passive stability in insect-mimicking flapping-wing micro air vehicle. International Journal of Intelligent Unmanned Systems, 2015, 3(1): 18-38 [11] Rose C, Fearing R S. Comparison of ornithopter wind tunnel force measurements with free flight. In: Proceeding of the 2014 IEEE International Conference on Robotics and Automation. Hong Kong, China: IEEE, 2014. 1816-1821 [12] Zufferey J C, Klaptocz A, Beyeler A, Nicoud J D, Floreano D. A 10-gram vision-based flying robot. Advanced Robotics, 2007, 21(14): 1671-1684 [13] Harmon R, Grauer J, Hubbard J E Jr, Conroy J, Humbert S J, Siaraman J, Roget B. Experimental determination of ornithopter membrane wing shapes used for simple aerodynamic modeling. In: Proceedings of the 26th AIAA Applied Aerodynamics Conference. Hawaii, USA: AIAA, 2008. DOI: 10.2514/6.2008-6237 [14] Ang Hai-Song, Zeng Rui, Duan Wen-Bo, Shi Zhi-Wei. Aerodynamic experimental investigation for mechanism of lift and thrust of flexible flapping-wing MAV. Journal of Aerospace Power, 2007, 22(11): 1838-1845(昂海松, 曾锐, 段文博, 史志伟. 柔性扑翼微型飞行器升力和推力机理的风洞试验和飞行试验. 航空动力学报, 2007, 22(11): 1838-1845) [15] Hou Yu, Fang Zong-De, Liu Lan, Fu Wei-Ping. Dynamic analysis and engineering design of biomimetic flapping-wing micro air vehicles. Acta Aeronautica et Astronautica Sinica, 2005, 26(2): 173-178(侯宇, 方宗德, 刘岚, 傅卫平. 仿生微扑翼飞行器机构动态分析与工程设计方法. 航空学报, 2005, 26(2): 173-178) [16] Mao S, Gang D. Lift and power requirements of hovering insect flight. Acta Mechanica Sinica, 2003, 19(5): 458-469 [17] Shen C, Sun M. Power requirements of vertical flight in the dronefly. Journal of Bionic Engineering, 2015, 12(2): 227-237 [18] Karásek M, Preumont A. Simulation of flight control of a hummingbird like robot near hover. In: Proceedings of the 18th International Conference on Engineering Mechanics. Svratka, Czech Republic, 2012. 607-619 [19] Tang Zhi-Gong, Xu Xiao-Bin, Yang Yan-Guang, Li Xu-Guo, Dai Jin-Wen, Lv Zhi-Guo, He Wei. Research progress on hypersonic wind tunnel aerodynamic testing techniques. Acta Aeronautica et Astronautica Sinica, 2015, 36(1): 86-97(唐志共, 许晓斌, 杨彦广, 李绪国, 戴金雯, 吕治国, 贺伟. 高超声速风洞气动力试验技术进展. 航空学报, 2015, 36(1): 86-97) [20] Weis-Fogh T. Flapping flight and power in birds and insects, conventional and novel mechanisms. Swimming and Flying in Nature. New York, US: Springer, 1975. 729-762 [21] Sohn M H, Chang J W. Flow visualization and aerodynamic load calculation of three types of clap-fling motions in a Weis-Fogh mechanism. Aerospace Science and Technology, 2007, 11(2-3): 119-129 [22] Yu Bing, Yu Lei, Liu Ting-Bo, Zhao Yong-Mei, Yan Jing-Ping. The study status in flying mechanism of the bionic insect equipment. Manufacturing Information Engineering of China, 2006, 35(7): 70-75(于冰, 于雷, 刘廷波, 赵永美, 颜景平. 关于仿生飞行器仿昆飞行机理的研究状况. 中国制造业信息化, 2006, 35(7): 70-75) [23] Van Den Berg C, Ellington C P. The vortex wake of a ‘hovering' model hawkmoth. Philosophical Transactions of the Royal Society B: Biological Sciences, 1997, 352(1351): 317-328 [24] Dickinson M H, Lehmann F O, Sane S P. Wing rotation and the aerodynamic basis of insect flight. Science, 1999, 284(5422): 1954-1960 [25] Dickinson M. Solving the mystery of insect flight. Scientific American, 2001, 284(6): 48-57 [26] Von Karman T. Aerodynamics: Selected Topics in the Light of Their Historical Development. Courier Corporation, 2004. [27] Jones K D, Dohring C M, Platzer M F. Wake structures behind plunging airfoils: a comparison of numerical and experimental results. In: Proceedings of the 34th Aerospace Sciences Meeting and Exhibit. Reno, NV, USA: AIAA, 1996. DOI: 10.2514/6.1996-78 [28] Xiao T, Li Z, Deng S, Ang H, Zhou X. Numerical study on the flow characteristics of micro air vehicle wings at low Reynolds numbers. International Journal of Micro Air Vehicles, 2016, 8(1): 29-40 [29] Zeng Rui, Ang Hai-Song. Aerodynamic computation of flapping-wing simulating birds wings. Journal of Nanjing Universinty of Aeronautics and Astronautics, 2003, 35(1): 6-12(曾锐, 昂海松. 仿鸟复合振动的扑翼气动分析. 南京航空航天大学学报, 2003, 35(1): 6-12) [30] Zeng Rui, Ang Hai-Song, Mei Yuan, Ji Jian. Flexibility of flapping wing and its effect on aerodynamic characteristic. Chinese Journal of Computational Mechanics, 2005, 22(6): 750-754(曾锐, 昂海松, 梅源, 季健. 扑翼柔性及其对气动特性的影响. 计算力学学报, 2005, 22(6): 750-754) [31] Chen Mao-Wei, Sun Mao. Experimental measurement and force analysis of a fast takeoff in dronefly. Acta Aeronautica et Astronautica Sinica, 2014, 35(12): 3222-3231(陈茂伟, 孙茂. 蜂蝇快速起飞过程的实验观测及力学分析. 航空学报, 2014, 35(12): 3222-3231) [32] He W, Zhang S. Control design for nonlinear flexible wings of a robotic aircraft. IEEE Transactions on Control Systems Technology, 2017, 25(1): 351-357 [33] Jones K D, Duggan S J, Platzer M F. Flapping-wing propulsion for a micro air vehicle. In: Proceedings of the 39th Aerospace Sciences Meeting and Exhibit. Reno, NV, USA: AIAA, 2001. DOI: 10.2514/6.2001-126 [34] Verma N, Shoeb A, Bohorquez J, Dawson J. A micro-power EEG acquisition SoC with integrated feature extraction processor for a chronic seizure detection system. IEEE Journal of Solid-State Circuits, 2010, 45(4): 804-816 [35] Bruno J C, Ortega-López V, Coronas A. Integration of absorption cooling systems into micro gas turbine trigeneration systems using biogas: case study of a sewage treatment plant. Applied Energy, 2009, 86(6): 837-847 [36] Mehra A, Zhang X, Ayon A A, Waitz I A, Schmidt M A, Spadaccini C M. A six-wafer combustion system for a silicon micro gas turbine engine. Journal of Microelectromechanical Systems, 2000, 9(4): 517-527 [37] Violi A, Yan S, Eddings E G, Sarofim A F, Granata S, Faravelli T, Ranzi E. Experimental formulation and kinetic model for JP-8 surrogate mixtures. Combustion Science and Technology, 2002, 174(11-12): 399-417 [38] London A P, Ayón A A, Epstein A H, Spearing S M, Harrison T, Peles Y, Kerrebrock J L. Microfabrication of a high pressure bipropellant rocket engine. Sensors and Actuators A: Physical, 2001, 92(1-3): 351-357 [39] Fu K, Knobloch A J, Martinez F C, Walther D C, Fernandez-Pello C, Pisano A P, Liepmann D. Design and experimental results of smal-scale rotary engines. In: Proceedings of the 2001 ASME International Mechanical Engineering Congress and Exposition. New York, USA: ASME, 2001. 3439-3445 [40] Zhang Shi-Min, Guo Zhi-Ping, Xia Bi-Zhong, Duan Guang-Hong. Study on the primary movers of micro/man-portable power generation system-micro/mini internal combustion engines. Small Internal Combustion Engine and Motorcycle, 2004, 33(4): 4-8(张仕民, 郭志平, 夏必忠, 段广洪. 微型/便携式发电系统原动机-微型/小型内燃机的研究. 小型内燃机与摩托车, 2004, 33(4): 4-8) [41] Grasmeyer J M, Keennon M T. Development of the black widow micro air vehicle. In: Proceedings of the 39th AIAA Aerospace Sciences Meeting and Exhibit. Reston, VA, USA: AIAA, 2001. DOI: 10.2514/6.2001-127 [42] Keennon M T, Grasmeyer J M. Development of the black widow and microbat MAVs and a vision of the future of MAV design. In: Proceedings of AIAA/ICAS International Air and Space Symposium and Exposition: The Next 100 Years. Reston, VA, USA: AIAA, 2003. DOI: 10.2514/6.2003-2901 [43] Prior S D, Shen S T, White A S, Odedra S, Karamanoglu M, Erbil M A, Foran T. Development of a novel platform for greater situational awareness in the urban military terrain. Engineering Psychology and Cognitive Ergonomics. Berlin Heidelberg, Germany: Springer, 2009. 120-125 [44] Baughman R H. Conducting polymer artificial muscles. Synthetic Metals, 1996, 78(3): 339-353 [45] Tao Bao-Qi. Intelligent Material Structures. Beijing: National Defence Industry Press, 1997.(陶宝祺. 智能材料结构. 北京: 国防工业出版社, 1997.) [46] Michelson R C. Entomopter and Method for Using Same, U.S. Patent 6082671, July 2000. [47] Wang Yong-Shou. Laser propulsion micro UAV and system optimization. Winged Missiles Journal, 2005, (7): 24-29 (王永寿. 激光推进微型无人机及其系统最优化. 飞航导弹, 2005, (7): 24-29) [48] Wang Guang-Yu, Hong Yan-Ji, Ye Ji-Fei. The investigation process of laser propolsion. In: Proceeedings of the 24th Annual Meeting of Chinese Academy of aerospace solid rocket propulsion. Yantai, China: Chinese Society of Astronautics, 2007. 367-372 (王广宇, 洪延姬, 叶继飞. 激光微推进研究进展. 中国宇航学会固体火箭推进24届年会论文集. 烟台,中国: 中国宇航学会, 2007. 367-372) [49] Kantrowitz A. Propulsion to orbit by ground based lasers. Astronaut, 1972, 10: 74-76 [50] Phipps C R, Luke J R. Micro laser plasma thrusters for small satellites. In: Proceedings of the SPIE 4065, High-Power Laser Ablation III. Santa Fe, NM,USA: SPIE, 2000. 801-809 [51] Phipps C R, Luke J, Helgeson W. Laser space propulsion overview. In: Proceedings of the SPIE 6346, XVI International Symposium on Gas Flow, Chemical Lasers, and High-Power Lasers. Santa Fe, NM,USA: SPIE, 2007. 660602 [52] Duan Hong-Jun, Shi Xiao-Ping. Modeling and Control of Micro Air Vehicle. Beijing: Science Press, 2012.(段洪君, 史小平. 微型飞行器建模与控制. 北京: 科学出版社, 2012.) [53] Chirarattananon P, Ma K Y, Wood R J. Adaptive control of a millimeter-scale flapping-wing robot. Bioinspiration & Biomimetics, 2014, 9(2): Article No. 025004 [54] Soleymani T, Saghafi F. Fuzzy trajectory tracking control of an autonomous air vehicle. In: Proceedings of the 2nd International Conference on Mechanical and Electronics Engineering. Kyoto, Japan: IEEE, 2010. 347-352 [55] Cheng B, Deng X Y. A neural adaptive controller in flapping flight. Journal of Robotics and Mechatronics, 2012, 24(4): 602-611 [56] Duan Hong-Jun. Flight Attitude Control of MAV [Ph.D. dissertation], Harbin Institute of Technology, China, 2007(段洪君. 微型飞行器飞行姿态控制方法研究 [博士学位论文], 哈尔滨工业大学, 中国, 2007) [57] Lin C M, Chen T Y. Self-organizing CMAC control for a class of MIMO uncertain nonlinear systems. IEEE Transactions on Neural Networks, 2009, 20(9): 1377-1384 [58] Ahmed B, Pota H R. Dynamic compensation for control of a rotary wing UAV using positive position feedback. Journal of Intelligent & Robotic Systems, 2011, 61(1-4): 43-56 [59] Shen S J, Michael N, Kumar V. Autonomous multi-floor indoor navigation with a computationally constrained MAV. In: Proceedings of the 2011 IEEE International Conference on Robotics and Automation. Shanghai, China: IEEE, 2011. 20-25 [60] Groen M, Bruggeman B, Remes B, Ruijsink B, van Oudheusden B, Bijl H. Improving flight performance of the flapping wing MAV DelFly II. In: Proceedings of the 2010 International Micro Air Vehicle Conference and Competition. Braunschweig, Germany, 2010. 3439-3445 [61] Torvik P J, Bagley R L. On the appearance of the fractional derivative in the behavior of real materials. Journal of Applied Mechanics, 1984, 51(2): 294-298 [62] James E C. Lifting-line theory for an unsteady wing as a singular perturbation problem. Journal of Fluid Mechanics, 1975, 70(4): 753-771 [63] Liu L Y, Yuan K. Noncollocated passivity-based PD control of a single-link flexible manipulator. Robotica, 2003, 21(2): 117-135 [64] Gai Wen-Dong, Wang Hong-Lun, Li Da-Wei. Flight dynamic modeling and analysis for the canard rotor/wing UAV. Acta Aerodynamica Sinica, 2012, 30(2): 244-249 (盖文东, 王宏伦, 李大伟. 鸭式旋翼/机翼无人机飞行动力学建模与分析. 空气动力学学报, 2012, 30(2): 244-249) [65] Pu Ming, Wu Qing-Xian, Jiang Chang-Sheng, Dian Song-Yi, Wang Yu-Fei. Recursive Terminal sliding mode control for higher-order nonlinear system with mismatched uncertainties. Acta Automatica Sinica, 2012, 38(11): 1777-1793(蒲明, 吴庆宪, 姜长生, 佃松宜, 王宇飞. 非匹配不确定高阶非线性系统递阶Terminal滑模控制. 自动化学报, 2012, 38(11): 1777-1793) [66] Zhang Wei-Cun, Liu Ji-Wei, Hu Guang-Da. Stability analysis of robust multiple model adaptive control systems. Acta Automatica Sinica, 2015, 41(1): 113-121(张维存, 刘冀伟, 胡广大. 鲁棒多模型自适应控制系统的稳定性. 自动化学报, 2015, 41(1): 113-121) [67] Chao H Y, Cao Y C, Chen Y Q. Autopilots for small fixed-wing unmanned air vehicles: a survey. In: Proceeding of the 2007 IEEE International Conference on Mechatronics and Automation. Harbin, China: IEEE, 2007. 3144-3149 [68] Brotherton T, Grabill P, Wroblewski D, Friend R, Sotomayer B, Berry J. A testbed for data fusion for engine diagnostics and prognostics. In: Proceeding of the 2002 IEEE Aerospace Conference Proceedings. Big Sky, MT, USA: IEEE, 2002, 6: 3029-3042 [69] Ucun L, Salášek J. HOSIDF-based feedforward friction compensation in low-velocity motion control systems. Mechatronics, 2014, 24(2): 118-127 [70] Ariyur K B, Krstic M. Real-time Optimization by Extremum-Seeking Control. Hoboken, NJ: John Wiley and Sons, 2003. [71] He W, Lv T, Chen Y N, He X Y, Sun C Y. Modeling and vibration control of flexible wings with output constraint. In: Proceeding of the 12th World Congress on Intelligent Control and Automation. Guilin, China: IEEE, 2016. 292-297 [72] Saska M, Vonásek V, Krajník T, Přeučil L. Coordination and navigation of heterogeneous MAV-UGV formations localized by a ‘hawk-eye'-like approach under a model predictive control scheme. International Journal of Robotics Research, 2014, 33(10): 1393-1412 [73] Liu Z L. Reinforcement adaptive fuzzy control of wing rock phenomena. IEE Proceedings - Control Theory and Applications, 2005, 152(6): 615-620 [74] Liu Tun, Chang Ya-Wu, Yang Da-Ming. The vibration suppression control of flexible spacecraft. Aerospace Control, 1992, (2): 25-33(刘暾, 常亚武, 杨大明. 柔性空间飞行器的振动抑止控制. 航天控制, 1992, (2): 25-33) [75] Duan Li-Wei, Tang Zhong-Liang, Wu Zhi-Hua. Active vibration suppression of vertical tail using H∞ robust control theory. Journal of Vibration, Measurement & Diagnosis, 2011, 31(1): 119-123(段丽玮, 汤忠梁, 吴志华. 飞行器垂直尾翼H∞鲁棒振动主动控制. 振动、测试与诊断, 2011, 31(1): 119-123) [76] Bialy B J, Chakraborty I, Cekic S C, Dixon W E. Adaptive boundary control of store induced oscillations in a flexible aircraft wing. Automatica, 2016, 70: 230-238 [77] Paranjape A A, Guan J Y, Chung S J, Krstic M. PDE boundary control for flexible articulated wings on a robotic aircraft. IEEE Transactions on Robotics, 2013, 29(3): 625-640 [78] Mozaffari-Jovin S, Firouz-Abadi R D, Roshanian J. Flutter of wings involving a locally distributed flexible control surface. Journal of Sound and Vibration, 2015, 357: 377-408 [79] Fan Qiong-Jian, Yang Zhong, Fang Ting, Shen Chun-Lin. Research status of coordinated formation flight control for multi-UAVs. Acta Aeronautica et Astronautica Sinica, 2009, 30(4): 683-691(樊琼剑, 杨忠, 方挺, 沈春林. 多无人机协同编队飞行控制的研究现状. 航空学报, 2009, 30(4): 683-691) [80] Liu Xiao-Xiong, Zhang Wei-Guo, Li Guang-Wen, Li Ai-Jun. Discussion on autonomous formation flight control technique of UAV. Electronics Optics & Control, 2006, 13(6): 28-31(刘小雄, 章卫国, 李广文, 李爱军. 无人机自主编队飞行控制的技术问题. 电光与控制, 2006, 13(6): 28-31) [81] Dong Xiao-Guang, Cao Xi-Bin, Zhang Jin-Xiu, Shi Li. A robust adaptive control law for satellite formation flying. Acta Automatica Sinica, 2013, 39(2): 132-141(董晓光, 曹喜滨, 张锦绣, 施梨. 卫星编队飞行的鲁棒自适应控制方法. 自动化学报, 2013, 39(2): 132-141) [82] Gu Y, Seanor B, Campa G, Napolitano M R, Rowe L, Gururajan S, Wan S. Design and flight testing evaluation of formation control laws. IEEE Transactions on Control Systems Technology, 2006, 14(6): 1105-1112 [83] Li Lei, Li Xiao-Min, Yang Sen. Formation control of quadrotors with unit quaternions based via backstepping method. Computer Measurement & Control, 2016, 24(2): 64-67(李磊, 李小民, 杨森. 基于单位四元数的四旋翼编队反演控制方法. 计算机测量与控制, 2016, 24(2): 64-67) [84] Dong X W, Yu B C, Shi Z Y, Zhong Y S. Time-varying formation control for unmanned aerial vehicles: theories and applications. IEEE Transactions on Control Systems Technology, 2015, 23(1): 340-348