2.765

2022影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

遥操作护理机器人系统的操作者姿态解算方法研究

左国玉 于双悦 龚道雄

左国玉, 于双悦, 龚道雄. 遥操作护理机器人系统的操作者姿态解算方法研究. 自动化学报, 2016, 42(12): 1839-1848. doi: 10.16383/j.aas.2016.c160137
引用本文: 左国玉, 于双悦, 龚道雄. 遥操作护理机器人系统的操作者姿态解算方法研究. 自动化学报, 2016, 42(12): 1839-1848. doi: 10.16383/j.aas.2016.c160137
ZUO Guo-Yu, YU Shuang-Yue, GONG Dao-Xiong. Operator Attitude Algorithm for Telerobotic Nursing System. ACTA AUTOMATICA SINICA, 2016, 42(12): 1839-1848. doi: 10.16383/j.aas.2016.c160137
Citation: ZUO Guo-Yu, YU Shuang-Yue, GONG Dao-Xiong. Operator Attitude Algorithm for Telerobotic Nursing System. ACTA AUTOMATICA SINICA, 2016, 42(12): 1839-1848. doi: 10.16383/j.aas.2016.c160137

遥操作护理机器人系统的操作者姿态解算方法研究

doi: 10.16383/j.aas.2016.c160137
基金项目: 

国家自然科学基金 61375086

中国科学研究院沈阳自动化所机器人学国家重点实验室开放课题 2014338

北京工业大学智能机器人领域大科研推进计划 002000514316008

详细信息
    作者简介:

    左国玉 博士, 北京工业大学电子信息与控制工程学院副教授.主要研究方向为遥操作机器人和仿生机器人.E-mail:zuoguoyu@bjut.edu.cn

    于双悦 北京工业大学电子信息与控制工程学院硕士研究生.主要研究方向为机器人控制.E-mail:ysy@emails.bjut.edu.cn

    通讯作者:

    龚道雄 博士, 北京工业大学电子信息与控制工程学院副教授.主要研究方向为计算智能与机器人.本文通信作者.E-mail:gongdx@bjut.edu.cn

Operator Attitude Algorithm for Telerobotic Nursing System

Funds: 

National Natural Science Foundation of China 61375086

Foundation of the State Key Laboratory of Robotics in Shenyang Institute of Automation (SIA) of Chinese Academy of Sciences 2014338

Beijing University of Technology Big Scientific Promoting Plan on Intelligent Robot 002000514316008

More Information
    Author Bio:

    Ph. D., associate professor at the College of Electronic Information and Control Engineering, Beijing University of Technology. His research interest covers telerobotics and bionic robotics

    Master student at the College of Electronic Information and Control Engineering, Beijing University of Technology. His main research interest is robot control

    Corresponding author: GONG Dao-Xiong Ph. D., associate professor at the College of Electronic Information and Control Engineering, Beijing University of Technology. His research interest covers computational intelligence and robotics. Corresponding author of this paper
  • 摘要: 设计了一种遥操作护理机器人系统,为实现从端同构式机器人的随动运动控制,对主端操作者人体姿态解算方法进行了研究.首先,构建由惯性传感单元构成的动作捕捉系统,对用作从端机器人动作指令的操作者人体姿态信息进行采集,采用四元数法对人体运动原始数据进行初步求解.其次,将四元数法得到的姿态数据解算成依据仿人结构设计的护理机器人各关节运动的目标姿态角,实现人体姿态到机器人动作的同构性映射.最后,为验证本文所提姿态解算方法的性能,设计了操作者控制护理机器人完成递送和拿取药瓶动作的实验.结果表明,本文姿态解算方法的解算性能与参考系统基本相同;在操作者动作姿态快速变化的时间段,系统仍可获得较高精度的目标姿态数据,其误差在动态条件下依旧能保持在2%以下;护理机器人可较好地实时复现操作者的人体动作.本文方法能满足机器人进行一般护理作业时对人体姿态数据处理的快速性和准确性要求.
    1)  本文责任编委 赵新刚
  • 图  1  "人在环内"的护理机器人遥操作控制

    Fig.  1  Human-in-the-loop tele-control for the robot

    图  2  遥操作护理机器人系统

    Fig.  2  Telerobotic nursing robot system

    图  3  四元数姿态解算框图

    Fig.  3  Block diagram of attitude calculation based on quaternion

    图  4  惯导四元数求解框图

    Fig.  4  Quaternion calculation based on inertial sensors

    图  5  人机同构运动的姿态解算流程

    Fig.  5  Motion mapping method from human operator to slave robot

    图  6  从端机器人的6自由度仿人机械臂

    Fig.  6  6-DOF humanoid mechanical arm on the slave robot

    图  7  主端控制下的从端机器人随动运动仿真

    Fig.  7  Motion simulation on slave robot under master control

    图  8  遥操作护理机器人系统的药瓶抓取和递送实验

    Fig.  8  Experiment on delivering and taking medicine bottle of telerobotic nursing system

    图  9  肩部俯仰角变化曲线

    Fig.  9  Curve of shoulder pitch angle

    图  10  肩部横滚角变化曲线

    Fig.  10  Curve of shoulder roll angle

    图  11  肩部偏航角变化曲线

    Fig.  11  Curve of shoulder yaw angle

    图  12  肘部俯仰角变化曲线

    Fig.  12  Curve of elbow pitch angle

    图  13  肘部横滚角变化曲线

    Fig.  13  Curve of elbow roll angle

    图  14  肩部俯仰角变化曲线

    Fig.  14  Curve of shoulder pitch angle

    图  15  肩部横滚角变化曲线

    Fig.  15  Curve of shoulder roll angle

    图  16  肩部偏航角变化曲线

    Fig.  16  Curve of shoulder yaw angle

    表  1  对应机械臂各关节的解算姿态数据精度

    Table  1  Average errors of five calculated joint angles

    关节角 角度变化均值(°) 比较误差均值(°) 相对误差
    肩部俯仰角 4.653 0.594 0.127
    肩部横滚角 4.02 0.451 0.112
    肩部偏航角 4.942 0.722 0.146
    肘部俯仰角 2.145 0.547 0.255
    肘部横滚角 3.581 0.695 0.194
    下载: 导出CSV
  • [1] 王田苗, 陶永, 陈阳.服务机器人技术研究现状与发展趋势.中国科学:信息科学, 2012, 42(9):1049-1066 http://www.cnki.com.cn/Article/CJFDTOTAL-PZKX201209001.htm

    Wang Tian-Miao, Tao Yong, Chen Yang. Research status and development trends of the service robotic technology. Scientia Sinica Informationis, 2012, 42(9):1049-1066 http://www.cnki.com.cn/Article/CJFDTOTAL-PZKX201209001.htm
    [2] 谭民, 王硕.机器人技术研究进展.自动化学报, 2013, 39(7):963-972 http://www.aas.net.cn/CN/abstract/abstract18124.shtml

    Tan Min, Wang Shuo. Research progress on robotics. Acta Automatica Sinica, 2013, 39(7):963-972 http://www.aas.net.cn/CN/abstract/abstract18124.shtml
    [3] Joubair A, Zhao L F, Bigras P, Bonev I. Absolute accuracy analysis and improvement of a hybrid 6-DOF medical robot. Industrial Robot:An International Journal, 2015, 42(1):44-53 doi: 10.1108/IR-09-2014-0396
    [4] Chen T L, Kemp C C. A direct physical interface for navigation and positioning of a robotic nursing assistant. Advanced Robotics, 2011, 25(5):605-627 doi: 10.1163/016918611X558243
    [5] Kawasaki H, Kimura H, Ito S, Nishimoto Y, Hayashi H, Sakaeda H. Hand rehabilitation support system based on self-motion control, with a clinical case report. In:Proceedings of the 2006 World Automation Congress. Budapest, Hungary:IEEE, 2006. 1-6
    [6] Mihelj M, Nef T, Riener R. ARMin-toward a six DoF upper limb rehabilitation robot. In:Proceedings of the 1st IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics. Pisa, Italy:IEEE, 2006. 1154-1159
    [7] Li J M, Wang S X, Wang X F, He C. Optimization of a novel mechanism for a minimally invasive surgery robot. The International Journal of Medical Robotics and Computer Assisted Surgery, 2010, 6(1):83-90 doi: 10.1002/rcs.293/abstract
    [8] Miyamoto H, Leechavengvongs S, Atik T, Facca S, Liverneaux P. Nerve transfer to the deltoid muscle using the nerve to the long head of the triceps with the da vinci robot:six cases. Journal of Reconstructive Microsurgery, 2014, 30(6):375-380 doi: 10.1055/s-00000029
    [9] Ma G W, Pytel M, Trejos A L, Hornblower V, Smallwood J, Patel R, Fenster A, Malthaner R A. Robot-assisted thoracoscopic brachytherapy for lung cancer:comparison of the ZEUS robot, VATS, and manual seed implantation. Computer Aided Surgery, 2007, 12(5):270-277 doi: 10.3109/10929080701626961
    [10] Mukai T, Hirano S, Nakashima H, Sakaida Y, Guo S J. Realization and safety measures of patient transfer by nursing-care assistant robot RIBA with tactile sensors. Journal of Robotics and Mechatronics, 2011, 23(3):360-369 doi: 10.20965/jrm.issn.1883-8049
    [11] Wester B A, Para M P, Sivakumar A, Kutzer M D, Katyal K D, Ravitz A D, Beaty J D, McLoughlin M P, Johannes M S. Experimental validation of imposed safety regions for neural controlled human patient self-feeding using the modular prosthetic limb. In:Proceedings of the 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems. Tokyo, Japan:IEEE, 2013. 877-884
    [12] Windolf M, Götzen N, Morlock M. Systematic accuracy and precision analysis of video motion capturing systems-exemplified on the Vicon-460 system. Journal of Biomechanics, 2008, 41(12):2776-2780 doi: 10.1016/j.jbiomech.2008.06.024
    [13] Seeberger R, Kane G, Hoffmann J, Eggers G. Accuracy assessment for navigated maxillo-facial surgery using an electromagnetic tracking device. Journal of Cranio-Maxillofacial Surgery, 2012, 40(2):156-161 doi: 10.1016/j.jcms.2011.03.003
    [14] Hess W. Head-tracking techniques for virtual acoustics applications. In:Proceedings of the 2012 Audio Engineering Society Convention 133. Erlangen, Germany:Fraunhofer Institute for Integrated Circuits IIS, 2012. (8782):1-15
    [15] Rudas I J, Gáti J, Szakál A, Némethy K. From exoskeleton to the Antal Bejczy center for intelligent robotics. In:Proceedings of the 2015 IEEE Intelligent Systems and Informatics. Subotica, Serbia:IEEE, 2015. 11
    [16] Simeone A L. Substitutional reality:towards a research agenda. In:Proceedings of the 1st IEEE Workshop on Everyday Virtual Reality. Arles, France:IEEE, 2015. 19-22
    [17] Zhang F, DiSanto W, Ren J, Dou Z, Yang Q, Huang H. A novel CPS system for evaluating a neural-machine interface for artificial legs. In:Proceedings of the 2011 IEEE/ACM International Conference on Cyber-Physical Systems. Chicago, IL, USA:IEEE, 2011. 67-76
    [18] Ogawa M, Honda K, Sato Y, Kudoh S, Oishi T, Ikeuchi K. Motion generation of the humanoid robot for teleoperation by task model. In:Proceedings of the 24th IEEE International Symposium on Robot and Human Interactive Communication. Kobe, Japan:IEEE, 2015. 71-76
    [19] Dai J S. Euler-Rodrigues formula variations, quaternion conjugation and intrinsic connections. Mechanism and Machine Theory, 2015, 92:144-152 doi: 10.1016/j.mechmachtheory.2015.03.004
    [20] Xinjilefu X, Feng S Y, Huang W W, Atkeson C G. Decoupled state estimation for humanoids using full-body dynamics. In:Proceedings of the 2014 IEEE International Conference on Robotics and Automation. Hong Kong, China:IEEE, 2014. 195-201
    [21] Zhang Z Q, Meng X L, Wu J K. Quaternion-based Kalman filter with vector selection for accurate orientation tracking. IEEE Transactions on Instrumentation and Measurement, 2012, 61(10):2817-2824 doi: 10.1109/TIM.2012.2196397
    [22] Fresk E, Nikolakopoulos G. Full quaternion based attitude control for a quadrotor. In:Proceedings of the 2013 European Control Conference. Zurich, Switzerland:IEEE, 2013. 3864-3869
    [23] Carminati M, Ferrari G, Grassetti R, Sampietro M. Real-time data fusion and MEMS sensors fault detection in an aircraft emergency attitude unit based on Kalman filtering. IEEE Sensors Journal, 2012, 12(10):2984-2992 doi: 10.1109/JSEN.2012.2204976
    [24] 葛泉波, 李文斌, 孙若愚, 徐姿.基于EKF的集中式融合估计研究.自动化学报, 2013, 39(6):816-825 http://www.aas.net.cn/CN/abstract/abstract18107.shtml

    Ge Quan-Bo, Li Wen-Bin, Sun Ruo-Yu, Xu Zi. Centralized fusion algorithms based on EKF for multisensor non-linear systems. Acta Automatica Sinica, 2013, 39(6):816-825 http://www.aas.net.cn/CN/abstract/abstract18107.shtml
    [25] 彭孝东, 张铁民, 李继宇, 陈渝.基于传感器校正与融合的农用小型无人机姿态估计算法.自动化学报, 2015, 41(4):854-860 http://www.aas.net.cn/CN/abstract/abstract18659.shtml

    Peng Xiao-Dong, Zhang Tie-Min, Li Ji-Yu, Chen Yu. Attitude estimation algorithm of agricultural small-UAV based on sensors fusion and calibration. Acta Automatica Sinica, 2015, 41(4):854-860 http://www.aas.net.cn/CN/abstract/abstract18659.shtml
    [26] Zhao H, Wang Z Y. Motion measurement using inertial sensors, ultrasonic sensors, and magnetometers with extended Kalman filter for data fusion. IEEE Sensors Journal, 2012, 12(5):943-953 doi: 10.1109/JSEN.2011.2166066
    [27] Valenti R G, Dryanovski I, Xiao J Z. Keeping a good attitude:a quaternion-based orientation filter for IMUs and MARGs. Sensors, 2015, 15(8):19302-19330 doi: 10.3390/s150819302
  • 加载中
图(16) / 表(1)
计量
  • 文章访问数:  2434
  • HTML全文浏览量:  372
  • PDF下载量:  1007
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-02-03
  • 录用日期:  2016-08-15
  • 刊出日期:  2016-12-01

目录

    /

    返回文章
    返回