2.765

2022影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

自适应鲁棒控制器设计新方法在电液伺服系统中的应用

陈光荣 王军政 汪首坤 赵江波 沈伟 李静

陈光荣, 王军政, 汪首坤, 赵江波, 沈伟, 李静. 自适应鲁棒控制器设计新方法在电液伺服系统中的应用. 自动化学报, 2016, 42(3): 375-384. doi: 10.16383/j.aas.2016.c150473
引用本文: 陈光荣, 王军政, 汪首坤, 赵江波, 沈伟, 李静. 自适应鲁棒控制器设计新方法在电液伺服系统中的应用. 自动化学报, 2016, 42(3): 375-384. doi: 10.16383/j.aas.2016.c150473
CHEN Guang-Rong, WANG Jun-Zheng, WANG Shou-Kun, ZHAO Jiang-Bo, SHEN Wei, LI Jing. Application of a New Adaptive Robust Controller Design Method to Electro-hydraulic Servo System. ACTA AUTOMATICA SINICA, 2016, 42(3): 375-384. doi: 10.16383/j.aas.2016.c150473
Citation: CHEN Guang-Rong, WANG Jun-Zheng, WANG Shou-Kun, ZHAO Jiang-Bo, SHEN Wei, LI Jing. Application of a New Adaptive Robust Controller Design Method to Electro-hydraulic Servo System. ACTA AUTOMATICA SINICA, 2016, 42(3): 375-384. doi: 10.16383/j.aas.2016.c150473

自适应鲁棒控制器设计新方法在电液伺服系统中的应用

doi: 10.16383/j.aas.2016.c150473
基金项目: 

国家高技术研究发展计划(863计划) 2011AA041002

详细信息
    作者简介:

    王军政 北京理工大学教授.主要研究方向为运动驱动与控制, 电液伺服/比例控制, 试验测试与负载模拟, 机器人控制.E-mail:wangjz@bit.edu.cn

    汪首坤 北京理工大学副教授.主要研究方向为电液伺服控制, 机电控制系统的性能测试, 无人运动平台.E-mail:bitwsk@bit.edu.cn

    赵江波 北京理工大学副教授.主要研究方向为运动驱动与控制, 电液伺服系统节能控制.E-mail:zhaojiangboo@bit.edu.cn

    沈伟 北京理工大学讲师.主要研究方向为控制系统性能测试和运动驱动与控制.E-mail:sw_she@bit.edu.cn

    李静 北京理工大学副教授.主要研究方向为无人运动平台环境认知, 运动目标检测与跟踪.E-mail:bitljing@bit.edu.cn

    通讯作者:

    陈光荣 北京理工大学博士研究生.主要研究方向为伺服系统和机器人控制.本文通信作者.E-mail:chenguangrong2012@gmail.com

Application of a New Adaptive Robust Controller Design Method to Electro-hydraulic Servo System

Funds: 

National High Technology Research and Development Program of China (863 Program) 2011AA041002

More Information
    Author Bio:

    Professor at Beijing Institute of Technology. His research interest covers motion drive and control, electro-hydraulic servo/proportional control, test experiment and load simulation, and robotic control.E-mail:

    Associate professor at Beijing Institute of Technology. His research interest covers electro-hydraulic servo control, performance test of mechatronics control system, and unmanned motion platform.E-mail:

    Associate professor at Beijing Institute of Technology. His research interest covers motion drive and control, energy saving control of electro-hydraulic servo system.E-mail:

    Lecturer at Beijing Institute of Technology. His research interest covers performance test of control system, and motion drive and control.E-mail:

    Associate professor at Beijing Institute of Technology. Her research interest covers environment cognition of unmanned motion platform, and moving object detection and tracking.E-mail:

    Corresponding author: CHEN Guang-Rong Ph.D. candidate at Beijing Institute of Technology. His research interest covers servo system and robotic control. Corresponding author of this paper. E-mail:chenguangrong2012@gmail.com
  • 摘要: 提出了一种自适应鲁棒控制器设计新方法, 并运用在阀控缸电液位置伺服系统中.首先, 将含有确定、不确定、已知、未知、线性和非线性项的电液伺服系统进行完整地数学建模, 以状态空间的形式表出.然后利用本文所提的新方法设计自适应鲁棒控制器和相应的自适应律来处理所建模型中的各项元素.该控制器通过设计一个带有虚拟控制量的控制状态空间表达式并结合状态观测器来获得.设计合适的虚拟控制量, 可在任意给定条件下, 使所有的系统状态都收敛到所设计的理想状态.接着设计李亚普诺夫函数来证明闭环系统的稳定性.最后建立硬件实验平台与经典自适应鲁棒控制方法进行对比实验验证此自适应鲁棒控制器设计新方法的有效性和优势.
  • 图  1  阀控缸电液位置伺服系统

    Fig.  1  Valve-control-cylinder electro-hydraulic position servo system

    图  2  阀控缸电液位置伺服系统实验平台

    Fig.  2  The experimental platform of valve-control-cylinder electro-hydraulic position servo system

    图  3  对比实验控制跟踪性能曲线

    Fig.  3  The control tracking performance of comparative experiments

    图  4  对比实验伺服阀控制电流

    Fig.  4  The control currents of comparative experiments

    图  5  对比实验负载力估计曲线和压力曲线

    Fig.  5  The load force estimations and actual pressures of comparative experiments

    图  6  本文控制器系统参数估计

    Fig.  6  The system parameters estimation of the proposed controller

    表  1  电液伺服系统硬件配置

    Table  1  The hardware of electro-hydraulic servo system

    组件 型号与参数
    伺服电机 MDME152GCGM
    MCY14-13
    溢流阀 Rexroth
    伺服阀 FF-101/8
    位移传感器 LVDT(WY-100L)
    压力传感器 TRAFAG8251.84.25.17/NAT4000A
    控制器 TMS320F28335
    液压缸 $L$ : 100 mm, $D$ (piston): 20 mm, $D$ (rod): 10 mm
    下载: 导出CSV

    表  2  系统参数

    Table  2  The system parameters

    参数 值/单位 参数 值/单位
    $ {P_s}$ $ 9 {\rm MPa}$ $ {C_d}$ $ 0.62$
    $ {P_r}$ $ 0 {\rm MPa}$ $ W$ $ \pi /4 \times {10^{ -3}} {\rm {m^2}/m}$
    $ {A_1}$ $ 3.14 \times {10^{ -4}} {\rm {m^2}}$ $ {C_{tm}}$ $ 1 \times {10^{ -5}} {\rm {m^3}/s/MPa}$
    $ {A_2}$ $ 2.355 \times {10^{ -4}} {\rm {m^2}}$ $ {C_{em1}}$ $ 1 \times {10^{ -8}} {\rm {m^3}/s/MPa}$
    $ {V_{10}}$ $ 8.5 \times {10^{ -5}} {\rm {m^3}}$ $ {C_{em2}}$ $ 1 \times {10^{ -8}} {\rm {m^3}/s/MPa}$
    $ {V_{20}}$ $ 5.36 \times {10^{ -5}} {\rm {m^3}}$ $ \rho $ $ 870 {\rm kg/{m^3}}$
    $ {\beta _e}$ $ 690 {\rm MPa}$ $ {k_v}$ $ 0.25 {\rm m/A}$
    $ M$ $ 20 {\rm kg}$ $ {\tau _v}$ $ 0.008 {\rm s}$
    下载: 导出CSV
  • [1] Merritt H E. Hydraulic Control Systems. New York:John Wiley and Sons, 1967.
    [2] Yao J Y, Jiao Z X, Yao B. Nonlinear adaptive robust backstepping force control of hydraulic load simulator:theory and experiments. Journal of Mechanical Science and Technology, 2014, 28(4):1499-1507 doi: 10.1007/s12206-014-0137-z
    [3] Yao J Y, Jiao Z X, Ma D W. Adaptive robust control of DC motors with extended state observer. IEEE Transactions on Industrial Electronics, 2014, 61(7):3630-3637 doi: 10.1109/TIE.2013.2281165
    [4] Lu L, Yao B. Energy-saving adaptive robust control of a hydraulic manipulator using five cartridge valves with an accumulator. IEEE Transactions on Industrial Electronics, 2014, 61(12):7046-7054 doi: 10.1109/TIE.2014.2314054
    [5] Busquets E, Ivantysynova M. Adaptive robust motion control of an excavator hydraulic hybrid swing drive. SAE International Journal of Commercial Vehicles, 2015, 8(2):568-582 doi: 10.4271/2015-01-2853
    [6] Chen G R, Wang J Z, Ma L L, Hao R J. Observer-based and energy saving control of single-rod electro-hydraulic servo system driven by servo motor. In:Proceedings of the 2015 American Control Conference. Chicago, USA:IEEE, 2015. 2224-2229
    [7] 陈光荣, 王军政, 汪首坤, 马立玲.基于主被动负载的负载独立口双阀节能控制系统研究.北京理工大学学报[Online], available: http://journal.bit.edu.cn/zr/ch/reader/view_abstract.aspx?flag=2&file_no=201501040000002&journal_id=bjlgzr, Nov-ember 2, 2015

    Chen Guang-Rong, Wang Jun-Zheng, Wang Shou-Kun, Ma Li-Ling. The research of separate meter in and separate meter out energy saving control system using dual servo valves under complex load conditions. Transactions of Beijing Institute of Technology[Online], available: http://journal.bit.edu.cn/zr/ch/reader/view_abstract.aspx?flag=2&file_no=201501040000002&journal_id=bjlgzr, Nov-ember 2, 2015
    [8] He Y D, Wang J Z, Hao R J. Adaptive robust dead-zone compensation control of electro-hydraulic servo systems with load disturbance rejection. Journal of Systems Science and Complexity, 2015, 28(2):341-359 doi: 10.1007/s11424-014-2243-5
    [9] Truong D Q, Ahn K K. Force control for hydraulic load simulator using self-tuning grey predictor-fuzzy PID. Mechatronics, 2009, 19(2):233-246 doi: 10.1016/j.mechatronics.2008.07.007
    [10] Guo Q, Yu T, Jiang D. High-gain observer-based output feedback control of single-rod electro-hydraulic actuator. IET Control Theory and Applications, 2015, 9(16):2395-2404 doi: 10.1049/iet-cta.2014.1158
    [11] Yao B, Bu F P, Reedy J, Chiu G T C. Adaptive robust motion control of single-rod hydraulic actuators:theory and experiments. IEEE/ASME Transactions on Mechatronics, 2000, 5(1):79-91 doi: 10.1109/3516.828592
    [12] Guan C, Pan S X. Nonlinear adaptive robust control of single-rod electro-hydraulic actuator with unknown nonlinear parameters. IEEE Transactions on Control Systems Technology, 2008, 16(3):434-445 doi: 10.1109/TCST.2007.908195
    [13] Li Y M, Tong S C, Li T S. Observer-based adaptive fuzzy tracking control of MIMO stochastic nonlinear systems with unknown control directions and unknown dead zones. IEEE Transactions on Fuzzy Systems, 2015, 23(4):1228-1241 doi: 10.1109/TFUZZ.2014.2348017
    [14] Lu L, Yao B, Wang Q F, Chen Z. Adaptive robust control of linear motors with dynamic friction compensation using modified LuGre model. Automatica, 2009, 45(12):2890-2896 doi: 10.1016/j.automatica.2009.09.007
    [15] Krstic M, Kanellakopoulos I, Kokotovic P V. Nonlinear and Adaptive Control Design. New York:Wiley, 1995.
    [16] Yao B, Tomizuka M. Adaptive robust control of SISO nonlinear systems in a semi-strict feedback form. Automatica, 1997, 33(5):893-900 doi: 10.1016/S0005-1098(96)00222-1
    [17] Yao B, Palmer A. Indirect adaptive robust control of SISO nonlinear systems in semi-strict feedback forms. In:Proceedings of the 15th IFAC World Congress. Barcelona, Spain:IFAC, 2002. 1050
    [18] Tong S C, Sui S, Li Y M. Fuzzy adaptive output feedback control of MIMO nonlinear systems with partial tracking errors constrained. IEEE Transactions on Fuzzy Systems, 2015, 23(4):729-742 doi: 10.1109/TFUZZ.2014.2327987
    [19] Yao J Y, Jiao Z X, Ma D W. Extended-state-observer-based output feedback nonlinear robust control of hydraulic systems with backstepping. IEEE Transactions on Industrial Electronics, 2014, 61(11):6285-6293 doi: 10.1109/TIE.2014.2304912
    [20] 王亚刚, 许晓鸣.自适应鲁棒最优PI控制器.自动化学报, 2009, 35(10):1352-1356 doi: 10.3724/SP.J.1004.2009.01352

    Wang Ya-Gang, Xu Xiao-Ming. Adaptive and optimal PI controller with robustness. Acta Automatica Sinica, 2009, 35(10):1352-1356 doi: 10.3724/SP.J.1004.2009.01352
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  1805
  • HTML全文浏览量:  123
  • PDF下载量:  1484
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-07-21
  • 录用日期:  2015-11-02
  • 刊出日期:  2016-03-01

目录

    /

    返回文章
    返回