2.793

2018影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

粒子滤波理论、方法及其在多目标跟踪中的应用

李天成 范红旗 孙树栋

李天成, 范红旗, 孙树栋. 粒子滤波理论、方法及其在多目标跟踪中的应用. 自动化学报, 2015, 41(12): 1981-2002. doi: 10.16383/j.aas.2015.c150426
引用本文: 李天成, 范红旗, 孙树栋. 粒子滤波理论、方法及其在多目标跟踪中的应用. 自动化学报, 2015, 41(12): 1981-2002. doi: 10.16383/j.aas.2015.c150426
LI Tian-Cheng, FAN Hong-Qi, SUN Shu-Dong. Particle Filtering: Theory, Approach, and Application for Multitarget Tracking. ACTA AUTOMATICA SINICA, 2015, 41(12): 1981-2002. doi: 10.16383/j.aas.2015.c150426
Citation: LI Tian-Cheng, FAN Hong-Qi, SUN Shu-Dong. Particle Filtering: Theory, Approach, and Application for Multitarget Tracking. ACTA AUTOMATICA SINICA, 2015, 41(12): 1981-2002. doi: 10.16383/j.aas.2015.c150426

粒子滤波理论、方法及其在多目标跟踪中的应用


DOI: 10.16383/j.aas.2015.c150426
详细信息
    作者简介:

    范红旗国防科学技术大学自动目标识别重点实验室副教授. 2008 年获得国防科学技术大学信息与通信工程博士学位.主要研究方向为雷达信号与数据处理,目标跟踪与信息融合, 多智能体系统.E-mail: fhongqi@gmail.com

    通讯作者: 李天成西班牙萨拉曼卡大学科学院BISITE 组博士后, 2008 年获得哈尔滨工程大学工学与管理学(辅) 双学士学位, 2013 年获得英国伦敦南岸大学电子电气工程专业博士学位, 2015 年获得西北工业大学机械电子工程专业博士学位.主要研究方向为统计信号处理、信息融合与分布式计算, 特别是粒子滤波以及多目标跟踪.本文通信作者.
  • 基金项目:

    国家自然科学基金(51475383),国家自然科学基金青年基金(61101186),航空科学基金(20110112006)资助

Particle Filtering: Theory, Approach, and Application for Multitarget Tracking

More Information
  • Fund Project:

    Supported by National Natural Science Foundation of China (51475383), National Natural Science Foundation for Distinguished Young Scholar (61101186), Aviation Science Foundation (20110112006)

  • 摘要: 本文梳理了粒子滤波理论基本内容、发展脉络和最新研究进展, 特别是对其在多目标跟踪应用中的一系列难点问题与主流解决思路进行了详细分析和报道. 常规粒子滤波研究重点主要围绕重要性采样函数、计算效率、权值退化/样本匮乏和复杂系统建模展开. 作为一类复杂估计问题,多目标跟踪一方面需要准确的目标新生/消亡与演变、虚警/漏检等建模技术, 另一方面需要多传感器信息融合、航迹管理等复杂决策方法.暨有限集统计学应用于多目标跟踪后,粒子 滤波进入一个新的发展阶段---随机集粒子滤波.基于不同的背景假设,可以构建不同近似形式的随机集贝 叶斯滤波器并采用粒子滤波实现.但机动目标、未知场景、多目标航迹管理以及跟踪性能评价等仍是多 目标粒子滤波的研究难点和重点.
  • [1] Gordon N J, Salmond D J, Smith A F N. Novel approach to nonlinear/non-Gaussian Bayesian state estimation. IEE Proceedings F Radar and Signal Processing, 1993, 140(2): 107-113
    [2] [2] Doucet A, Godsill S, Andrieu C. On sequential Monte Carlo sampling methods for Bayesian filtering. Statistics and Computing, 2000, 10(3): 197-208
    [3] [3] Doucet A, de Freitas J, Gordon N. Sequential Monte Carlo Methods in Practice. New York: Springer, 2001.
    [4] [4] Arulampalam M S, Maskell S, Gordon N, Clapp T. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Transactions on Signal Processing, 2002, 50(2): 174-188
    [5] [5] Djuric P M, Kotecha J H, Zhang J Q, Huang Y F, Ghirmai T, Bugallo M F, Miguez J. Particle filtering. IEEE Signal Processing Magazine, 2003, 20(5): 19-38
    [6] [6] Ristic B, Arulampalam S, Gordon N. Beyond the Kalman Filter: Particle Filters for Tracking Applications. Boston, Ma., London: Artech House, 2004.
    [7] [7] Cappe O, Godsill S J, Moulines E. An overview of existing methods and recent advances in sequential Monte Carlo. Proceedings of the IEEE, 2007, 95(5): 899-924
    [8] [8] Doucet A, Johansen A M. A tutorial on particle filtering and smoothing: fifteen years later. Handbook of Nonlinear Filtering. Oxford: Oxford University Press, 2009.
    [9] [9] Gustafsson F. Particle filter theory and practice with positioning applications. IEEE Aerospace and Electronic Systems Magazine, 2010, 25(7): 53-81
    [10] Li T C, Sun S D, Sattar T P, Corchado J M. Fight sample degeneracy and impoverishment in particle filters: a review of intelligent approaches. Expert Systems With Applications, 2014, 41(8): 3944-3954
    [11] Pulford G W. Taxonomy of multiple target tracking methods. IEE Proceedings Radar, Sonar and Navigation, 2005, 152(5): 291-304
    [12] Dunik J, Straka O, Simandl M, Blasch E. Random-point-based filters: analysis and comparison in target tracking. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(2): 1403-1421
    [13] Isard M, MacCormick J. BraMBLe: a Bayesian multiple-blob tracker. In: Proceedings of the 8th International Conference on Computer Vision. Vancouver, BC: IEEE, 2001. 34-41
    [14] Orton M, Fitzgerald W. A Bayesian approach to tracking multiple targets using sensor arrays and particle filters. IEEE Transactions on Signal Processing, 2002, 50(2): 216-223
    [15] Avitzour D. Stochastic simulation Bayesian approach to multitarget tracking. IEE Proceedings-Radar, Sonar and Navigation, 1995, 142(2): 41-44
    [16] Gordon N J. A hybrid bootstrap filter for target tracking in clutter. IEEE Transactions on Aerospace and Electronic Systems, 1997, 33(1): 353-358
    [17] Stano P, Lendek Z, Braaksma J, Babuska R, de Keizer C, den Dekker A J. Parametric Bayesian filters for nonlinear stochastic dynamical systems: a survey. IEEE Transactions on Cybernetics, 2013, 43(6): 1607-1624
    [18] Patwardhan S C, Narasimhan S, Jagadeesan P, Gopaluni B, Shah S L. Nonlinear Bayesian state estimation: a review of recent developments. Control Engineering Practice, 2012, 20(10): 933-953
    [19] Li X R, Jilkov V P. A survey of maneuvering target tracking, part VI: approximate nonlinear density filtering in discrete time. In: Proceedings of the SPIE 8393, Signal and Data Processing of Small Targets 2012, 83930V. Baltimore, Maryland, USA: SPIE, 2012.
    [20] Mihaylova L, Carmi A Y, Septier F, Gning A, Pang S K, Godsill S. Overview of Bayesian sequential Monte Carlo methods for group and extended object tracking. Digital Signal Processing, 2014, 25: 1-16
    [21] Yang Xiao-Jun, Pan Quan, Wang Rui, Zhang Hong-Cai. Development and prospect of particle filtering. Control Theory Applications, 2006, 23(2): 261-267 (杨小军, 潘泉, 王睿, 张洪才. 粒子滤波进展与展望. 控制理论与应用, 2006, 23(2): 261-267)
    [22] Cheng Shui-Ying, Zhang Jian-Yun. Review on particle filters. Journal of Astronautics, 2008, 29(4): 1109-1111 (程水英, 张剑云. 粒子滤波评述. 宇航学报, 2008, 29(4): 1109-1111)
    [23] Wang Fa-Sheng, Lu Ming-Yu, Zhao Qing-Jie, Yuan Ze-Jian. Particle filtering algorithm. Chinese Journal of Computers, 2014, 37(8): 1679-1694 (王法胜, 鲁明羽, 赵清杰, 袁泽剑. 粒子滤波算法. 计算机学报, 2014, 37(8): 1679-1694)
    [24] Cheng Shui-Ying, Zou Ji-Wei, Tang Peng. Review on derivative-free nonlinear Bayesian filtering methods. Journal of Astronautics, 2009, 30(3): 843-857 (程水英, 邹继伟, 汤鹏. 免微分非线性Bayesian滤波方法评述. 宇航学报, 2009, 30(3): 843-857)
    [25] Creal D. A survey of sequential Monte Carlo methods for economics and finance. Econometric Reviews, 2012, 31(3): 245-296
    [26] Lopes H F, Tsay R S. Particle filters and Bayesian inference in financial econometrics. Journal of Forecasting, 2011, 30(1): 168-209
    [27] Van Leeuwen P J. Particle filtering in geophysical systems. Monthly Weather Review, 2009, 137(12): 4089-4114
    [28] Kostanjar Z, Jeren B, Cerovec J. Particle filters in decision making problems under uncertainty. Automatika, 2009, 50(3-4): 245-251
    [29] Thrun S, Burgard W, Fox D. Probabilistic Robotics. Cambridge: MIT Press, 2005.
    [30] Andrieu C, Doucet A, Singh S S, Tadic V B. Particle methods for change detection, system identification, and control. Proceedings of the IEEE, 2004, 92(3): 423-438
    [31] Johansen A M. Some Non-Standard Sequential Monte Carlo Methods and Their Applications [Ph.,D. dissertation], University of Cambridge, Cambridge, UK, 2006
    [32] Kantas N, Doucet A, Singh S S, Maciejowski J. An overview of sequential Monte Carlo methods for parameter estimation on general state space models. In: Proceedings of the 15th IFAC Symposium on System Identification. Saint-Malo Convention Center, Saint-Malo, France: IFAC, 2009. 774-785
    [33] Gao M, Zhang H. Sequential Monte Carlo methods for parameter estimation in nonlinear state-space models. Computers and Geosciences, 2012, 44: 70-77
    [34] Li T C, Bolic M, Djuric P M. Resampling methods for particle filtering: classification, implementation, and strategies. IEEE Signal Processing Magazine, 2015, 32(3): 70-86
    [35] Li T C, Villarrubia G, Sun S D, Corchado J M, Bajo J. Resampling methods for particle filtering: identical distribution, a new method, and comparable study. Frontiers of Information Technology and Electronic Engineering, 2015, 16(11): 969-984
    [36] Hlinka O, Hlawatsch F, Djuric P M. Distributed particle filtering in agent networks: a survey, classification, and comparison. IEEE Signal Processing Magazine, 2013, 30(1): 61-81
    [37] Hu X L, Schon T B, Ljung L. A general convergence result for particle filtering. IEEE Transactions on Signal Processing, 2011, 59(7): 3424-3429
    [38] Mbalawata I S, Srkk S. Moment conditions for convergence of particle filters with unbounded importance weights. Signal Processing, 2016, 118: 133-138
    [39] Crisan D, Li K. Generalised particle filters with Gaussian mixtures. Stochastic Processes and their Applications, 2015, 125(7): 2643-2673
    [40] Whiteley N P. Stability properties of some particle filters. The Annals of Applied Probability, 2013, 23(6): 2500-2537
    [41] Douc R, Moulines E, Olsson J. Long-term stability of sequential Monte Carlo methods under verifiable conditions. The Annals of Applied Probability, 2014, 24(5): 1767-1802
    [42] Straka O, Simandl M. A survey of sample size adaptation techniques for particle filters. In: Proceedings of the 15th IFAC Symposium on System Identification. Saint-Malo Convention Center, Saint-Malo, France: IFAC, 2009. 1358-1363
    [43] Del Moral P, Doucet A. Particle methods: an introduction with applications. ESAIM: Proceedings, 2014, 44: 1-46
    [44] Qiu C Z, Zhang Z Y, Lu H Z, Luo H W. A survey of motion-based multitarget tracking methods. Progress in Electromagnetics Research B, 2015, 62: 195-223
    [45] Yang Wei, Fu Yao-Wen, Long Jian-Qian, Li Xiang. The FISST-based target tracking techniques: a survey. Acta Electronica Sinica, 2012, 40(7): 1440-1448 (杨威, 付耀文, 龙建乾, 黎湘. 基于有限集统计学理论的目标跟踪技术研究综述. 电子学报, 2012, { 40}(7): 1440-1448)
    [46] Yang Feng, Wang Yong-Qi, Liang Yan, Pan Quan. A survey of PHD filter based multi-target tracking. Acta Automatica Sinica, 2013, 39(11): 1944-1956 (杨峰, 王永齐, 梁彦, 潘泉. 基于概率假设密度滤波方法的多目标跟踪技术综述. 自动化学报, 2013, 39(11): 1944-1956)
    [47] Pitt M K, Shephard N. Filtering via simulation: auxiliary particle filters. Journal of the American Statistical Association, 1999, 94(446): 590-591
    [48] van der Merwe R, Doucet A, de Freitas N, Wan E. The unscented particle filter. Narual Information Processing System, 2000. 584-590
    [49] Yang T, Mehta P G, Meyn S P. Feedback particle filter. IEEE Transactions on Automatic Control, 2013, 58(10): 2465-2480
    [50] Yu J X, Tang Y, Chen X C, Liu W J. Choice mechanism of proposal distribution in particle filter. In: Proceedings of the 2010 8th World Congress on Intelligent Control and Automation. Ji'nan, China: IEEE, 2010. 1051-1056
    [51] Li T C, Corchado J M, Bajo J, Sun S D, de Paz J F. Effectiveness of Bayesian filters: an information fusion perspective. Information Sciences, 2016, 329: 670-689
    [52] Li T C. A gap between simulation and practice for recursive filters: on the state transition noise. 2013, arXiv: 1308. 1056
    [53] Crisan D, Mguez J. Particle-kernel estimation of the filter density in state-space models. Bernoulli, 2014, 20(4): 1879-1929
    [54] Ades M, Van Leeuwen P J. An exploration of the equivalent weights particle filter. Quarterly Journal of the Royal Meteorological Society, 2013, 139(672): 820-840
    [55] Schon T, Gustafsson F, Nordlund P J. Marginalized particle filters for mixed linear/nonlinear state-space models. IEEE Transactions on Signal Processing, 2005, 53(7): 2279-2289
    [56] Doucet A, de Freitas N, Murphy K, Russell S. Rao-Blackwellised particle filtering for dynamic Bayesian networks. In: Proceedings of the 16th Conference on Uncertainty in Artificial Intelligence. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2000. 176-183
    [57] Chavali P, Nehorai A. Hierarchical particle filtering for multi-modal data fusion with application to multiple-target tracking. Signal Processing, 2014, 97: 207-220
    [58] Chen T S, Schon T B, Ohlsson H, Ljung L. Decentralized particle filter with arbitrary state decomposition. IEEE Transactions on Signal Processing, 2011, 59(2): 465-478
    [59] Smidl V, Quinn A. Variational Bayesian filtering. IEEE Transactions on Signal Processing, 2008, 56(10): 5020-5030
    [60] Li T C, Sun S D, Corchado J M, Sattar T P, Si S B. Numerical fitting-based likelihood calculation to speed up the particle Filter. International Journal of Adaptive Control and Signal Processing, arXiv: 1308.2401v3 (DOI:  10.1002/acs.2656)
    [61] Liu H P, Sun F C. Efficient visual tracking using particle filter with incremental likelihood calculation. Information Sciences, 2012, 195: 141-153
    [62] Boers Y. On the number of samples to be drawn in particle filtering. In: Proceedings of IEE Colloquium on Target Tracking: Algorithms and Applications. London: IET, 1999. 5/1-5/6
    [63] Straka O, Simandl M. Sample size adaptation for particle filters. In: Proceedings of the 16th IFAC symposium on Automatic Control in Aerospace. Saint Petersburg, Russia, 2004. 444-449
    [64] Fearnhead P, Liu Z. On-line inference for multiple changepoint problems. Journal of the Royal Statistical Society: Series B, 2007, 69(4): 589-605
    [65] Pan P, Schonfeld D. Dynamic proposal variance and optimal particle allocation in particle filtering for video tracking. IEEE Transactions on Circuits and Systems for Video Technology, 2008, 18(9): 1268-1279
    [66] Fox D. Adapting the sample size in particle filters through KLD-sampling. The International Journal of Robotics Research, 2003, 22(12): 985-1003
    [67] Soto A. Self adaptive particle filter. In: Proceedings of the 19th International Joint Conferences on Artificial Intelligence. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2005. 1398-1403
    [68] Li T, Sun S, Sattar T P. Adapting sample size in particle filters through KLD-resampling. Electronics Letters, 2013, 49(12): 740-742
    [69] Hassan W, Bangalore N, Birch P, Young R, Chatwin C. An adaptive sample count particle filter. Computer Vision and Image Understanding, 2012, 116(12): 1208-1222
    [70] Elvira V, Mguez J, Djurić P M. Adapting the number of particles in sequential Monte Carlo methods through an online scheme for convergence assessment. 2015, arXiv: 1509.04879
    [71] Li Tian-Cheng, Sun Shu-Dong. Double-resampling based Monte Carlo localization for mobile robot. Acta Automatica Sinica, 2010, 36(9): 1279-1286 (李天成, 孙树栋. 采用双重采样的移动机器人Monte Carlo定位方法. 自动化学报, 2010, 36(9): 1279-1286)
    [72] Lopez F, Zhang L X, Mok A, Beaman J. Particle filtering on GPU architectures for manufacturing applications. Computers in Industry, 2015, 71: 116-127
    [73] Murray L. GPU acceleration of the particle filter: the Metropolis resampler. 2012, arXiv: 1202.6163
    [74] Andrieu C, Doucet A, Holenstein R. Particle Markov chain Monte Carlo methods. Journal of the Royal Statistical Society: Series B, 2010, 72: 269-302
    [75] Chopin N, Jacob P E, Papaspiliopoulos O. SMC2: an efficient algorithm for sequential analysis of state space models. Journal of the Royal Statistical Society: Series B, 2013, 75(3): 397-426
    [76] Gu D B, Sun J X, Hu Z, Li H Z. Consensus based distributed particle filter in sensor networks. In: Proceeding of the International Conference on Information Automation. Changsha, China: IEEE, 2008. 302-307
    [77] Dias S S, Bruno M G S. Cooperative target tracking using decentralized particle filtering and RSS sensors. IEEE Transactions on Signal Processing, 2013, 61(14): 3632-3646
    [78] Hlinka O, Hlawatsch F, Djuric P M. Consensus-based distributed particle filtering with distributed proposal adaptation. IEEE Transactions on Signal Processing, 2014, 62(12): 3029-3041
    [79] Olfati-Saber R, Fax J A, Murray R M. Consensus and cooperation in networked multi-agent systems. Proceedings of the IEEE, 2007, 95(1): 215-233
    [80] Sayed A H. Adaptive networks. Proceedings of the IEEE, 2014, 102(4): 460-497
    [81] Li T C, Sun S D, Bolić M, Corchado J M. Algorithm design for parallel implementation of the SMC-PHD filter. Signal Processing, 2016, 119: 115-127
    [82] Beaudeau J P, Bugallo M F, Djuric P M. RSSI-based multi-target tracking by cooperative agents using fusion of cross-target information. IEEE Transactions on Signal Processing, 2015, 63(19): 5033-5044
    [83] Uney M, Clark D E, Julier S J. Distributed fusion of PHD filters via exponential mixture densities. IEEE Journal of Selected Topics in Signal Processing, 2013, 7(3): 521-531
    [84] Mohammadi A, Asif A. Distributed consensus + innovation particle filtering for bearing/range tracking with communication constraints. IEEE Transactions on Signal Processing, 2015, 63(3): 620-635
    [85] Kong A, Liu J S, Wong W H. Sequential imputations and Bayesian missing data problems. Journal of the American Statistical Association, 1994, 89(425): 278-288
    [86] Li T C, Sattar T P, Han Q, Sun S D. Roughening methods to prevent sample impoverishment in the particle PHD filter. In: Proceedings of the 16th International Conference on Information Fusion. Istanbul, Turkey: IEEE, 2013. 17-22
    [87] Kotecha J H, Djuric P M. Gaussian particle filtering. IEEE Transactions on Signal Processing, 2003, 51(10): 2592-2601
    [88] Kotecha J H, Djuric P M. Gaussian sum particle filtering. IEEE Transactions on Signal Processing, 2003, 51(10): 2602-2612
    [89] Yuan Ze-Jian, Zheng Nan-Ning, Jia Xin-Chun. The Gauss-Hermite particle filter. Acta Electronica Sinica, 2003, 31(7): 970-973 (袁泽剑, 郑南宁, 贾新春. 高斯,--,厄米特粒子滤波器. 电子学报, 2003, 31(7): 970-973)
    [90] Musso C, Oudjane N, Le Gland F. Improving regularised particle filters. Sequential Monte Carlo Methods in Practice. New York, NY, USA: Springer-Verlag, 2001. 247-271
    [91] Fan J Q, Yao Q W. Nonlinear Time Series: Nonparametric and Parametric Methods. New York: Springer-Verlag, 2003.
    [92] Gning A, Ristic B, Mihaylova L, Abdallah F. An introduction to box particle filtering. IEEE Signal Processing Magazine, 2013, 30(4): 166-171
    [93] Stano P M, Lendek Z, Babuşka R. Saturated particle filter: almost sure convergence and improved resampling. Automatica, 2013, 49(1): 147-159
    [94] Zhao Z G, Huang B, Liu F. Constrained particle filtering methods for state estimation of nonlinear process. AIChE Journal, 2014, 60(6): 2072-2082
    [95] Kyriakides I, Morrell D, Papandreou-Suppappola A. Sequential Monte Carlo methods for tracking multiple targets with deterministic and stochastic constraints. IEEE Transactions on Signal Processing, 2008, 56(3): 937-948
    [96] Vo B T, Vo B N, Cantoni A. Bayesian filtering with random finite set observations. IEEE Transactions on Signal Processing, 2008, 56(4): 1313-1326
    [97] Ristic B, Vo B T, Vo B N, Farina A. A tutorial on Bernoulli filters: theory, implementation and applications. IEEE Transactions on Signal Processing, 2013, 61(13): 3406-3430
    [98] Gning A, Ristic B, Mihaylova L. Bernoulli particle/box-particle filters for detection and tracking in the presence of triple measurement uncertainty. IEEE Transactions on Signal Processing, 2012, 60(5): 2138-2151
    [99] Li X R, Jilkov V P. Survey of maneuvering target tracking. Part I: dynamic models. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39(4): 1333-1364
    [100] Li X R, Jilkov V P. Survey of maneuvering target tracking. Part V: multiple-model methods. IEEE Transactions on Aerospace and Electronic Systems, 2005, 41(4): 1255-1321
    [101] Kreucher C, Bell K, Sobota D. A comparison of tracking algorithms for supermaneuverable targets. In: Proceedings of the 18th International Conference on Information Fusion. Washington, DC: IEEE, 2015. 534-541
    [102] McGinnity S, Irwin G W. Multiple model bootstrap filter for maneuvering target tracking. IEEE Transactions on Aerospace and Electronic Systems, 2000, 36(3): 1006-1012
    [103] Driessen H, Boers Y. Efficient particle filter for jump Markov nonlinear systems. IEE Proceedings Radar, Sonar and Navigation, 2005, 152(5): 323-326
    [104] Wang Wei, Yu Yu-Kui. Multi-try and multi-model particle filter for maneuvering target tracking. Acta Automatica Sinica, 2015, 41(6): 1201-1212 (王伟, 余玉揆. 多点测试的多模型机动目标跟踪算法. 自动化学报, 2015, 41(6): 1201-1212)
    [105] Boers Y, Driessen J N. Interacting multiple model particle filter. IEE Proceedings Radar, Sonar and Navigation, 2003, 150(5): 344-349
    [106] Bar-Shalom Y, Challa S, Blom H A P. IMM estimator versus optimal estimator for hybrid systems. IEEE Transactions on Aerospace and Electronic Systems, 2005, 41(3): 986-991
    [107] Blom H A P, Bloem E A. Exact Bayesian and particle filtering of stochastic hybrid systems. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(1): 55-70
    [108] Godsill S J, Vermaak J, Ng W, Li J F. Models and algorithms for tracking of maneuvering objects using variable rate particle filters. Proceedings of the IEEE, 2007, 95(5): 925-952
    [109] Nemeth C, Fearnhead P, Mihaylova L. Sequential Monte Carlo methods for state and parameter estimation in abruptly changing environments. IEEE Transactions on Signal Processing, 2014, 62(5): 1245-1255
    [110] Orguner U, Gustafsson F. Target tracking with particle filters under signal propagation delays. IEEE Transactions on Signal Processing, 2011, 59(6): 2485-2495
    [111] Berntorp K, Robertsson A, Arzen K E. Rao-Blackwellized particle filters with out-of-sequence measurement processing. IEEE Transactions on Signal Processing, 2014, 62(24): 6454-6467
    [112] Hlinka O, Hlawatsch F, Djuric P M. Distributed sequential estimation in asynchronous wireless sensor networks. IEEE Signal Processing Letters, 2015, 22(11): 1965-1969
    [113] Maiz C S, Molanes-Lopez E M, Miguez J, Djuric P M. A particle filtering scheme for processing time series corrupted by outliers. IEEE Transactions on Signal Processing, 2012, 60(9): 4611-4627
    [114] Su Y Y, Zhao Q J, Zhao L J, Gu D B. Abrupt motion tracking using a visual saliency embedded particle filter. Pattern Recognition, 2014, 47: 1826-1834
    [115] Bhaskar H, Dwivedi K, Dogra D P, Al-Mualla M, Mihaylova L. Autonomous detection and tracking under illumination changes, occlusions and moving camera. Signal Processing, 2015, 117: 343-354
    [116] Mahler R P S. Statistical Multisource-Multitarget Information Fusion. Boston, Ma., London: Artech House, 2007.
    [117] Mahler R P S. Advances in Statistical Multisource-Multitarget Information Fusion. Boston, Ma., London: Artech House, 2014.
    [118] Bernardo J T. Cognitive and functional frameworks for hard/soft fusion for the condition monitoring of aircraft. In: Proceedings of the 18th International Conference on Information Fusion. Washington, DC: IEEE, 2015. 287-294
    [119] Li X R, Bar-Shalom Y. Tracking in clutter with nearest neighbor filters: analysis and performance. IEEE Transactions on Aerospace and Electronic Systems, 1996, 32(3): 995-1010
    [120] Reid D B. An algorithm for tracking multiple targets. IEEE Transactions on Automatic Control, 1979, 24(6): 843-854
    [121] Streit R L, Luginbuhl T E. A probabilistic multi-hypothesis tracking algorithm without enumeration and pruning. In: Proceedings of the 6th Joint Service Data Fusion Symposium. Laurel, Maryland, 1993. 1015-1024
    [122] Fortmann T E, Bar-Shalom Y, Scheffe M. Sonar tracking of multiple targets using joint probabilistic data association. IEEE Journal of Oceanic Engineering, 1983, 8(3): 173-184
    [123] Vermaak J, Godsill S J, Perez P. Monte Carlo filtering for multi-target tracking and data association. IEEE Transactions on Aerospace and Electronic Systems, 2005, 41(1): 309-332
    [124] Oh S, Russell S, Sastry S. Markov chain Monte Carlo data association for multi-target tracking. IEEE Transactions on Automatic Control, 2009, 54(3): 481-497
    [125] Srkk S, Vehtari A, Lampinen J. Rao-Blackwellized particle filter for multiple target tracking. Information Fusion, 2007, 8(1): 2-15
    [126] Chavali P, Nehorai A. Concurrent particle filtering and data association using game theory for tracking multiple maneuvering targets. IEEE Transactions on Signal Processing, 2013, 61(20): 4934-4948
    [127] Silbert M E, Agate C S. New metrics for quantifying data association performance. In: Proceedings of the 17th International Conference on Information Fusion. Salamanca, Spain: IEEE, 2014. 1-8
    [128] Stone L D, Barlow C A, Corwin T L. Bayesian Multiple Target Tracking. Boston, Ma., London: Artech House, 1999.
    [129] Kreucher C, Kastella K, Hero A O III. Multitarget tracking using the joint multitarget probability density. IEEE Transactions on Aerospace and Electronic Systems, 2005, 41(4): 1396-1414
    [130] Yi W, Morelande M R, Kong L J, Yang J Y. A computationally efficient particle filter for multitarget tracking using an independence approximation. IEEE Transactions on Signal Processing, 2013, 61(4): 843-856
    [131] Garca-Fernndez F. Detection and Tracking of Multiple Targets Using Wireless Sensor Networks [Ph.,D. dissertation], Universidad Politcnica de Madrid, Spain, 2011
    [132] Garca-FernndezA F, Grajal J, Morelande M R. Two-layer particle filter for multiple target detection and tracking. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(3): 1569-1588
    [133] Georgy J, Noureldin A, Mellema G R. Clustered mixture particle filter for underwater multitarget tracking in multistatic active sonobuoy systems. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, 2012, 42(4): 547-560
    [134] Morelande M R, Kreucher C M, Kastella K. A Bayesian approach to multiple target detection and tracking. IEEE Transactions on Signal Processing, 2007, 55(5): 1589-1604
    [135] Bugallo M F, Djuric P M. Target tracking by symbiotic particle filtering. In: Proceedings of the 2010 IEEE Aerospace Conference. Big Sky, Montana: IEEE, 2010. 1-7
    [136] Houssineau J, Delande E, Clark D. Notes of the summer school on finite set statistics. 2013, arXiv: 1308.2586
    [137] Streit R, Degen C, Koch W. The pointillist family of multitarget tracking filters. 2015, arxiv: 1505.08000
    [138] Mahler R P S. Multitarget Bayes filtering via first-order multitarget moments. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39(4): 1152-1178
    [139] Mahler R P S. PHD filters of higher order in target number. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(4): 1523-1543
    [140] Vo B T, Vo B N, Cantoni A. The cardinality balanced multi-target multi-Bernoulli filter and its implementations. IEEE Transactions on Signal Processing, 2009, 57(2): 409-423
    [141] Vo B, Singh S, Doucet A. Sequential Monte Carlo implementation of the PHD filter for multi-target tracking. In: Proceedings of the 6th International Conference of Information Fusion. Cairns, Queensland, Australia: IEEE, 2003. 792-799
    [142] Zajic T, Mahler R P S. A particle-systems implementation of the PHD multitarget tracking filter. In: Proceedings of the SPIE 5096, Signal Processing, Sensor Fusion, and Target Recognition XII. Orlando, FL: SPIE, 2003. 291-299
    [143] Sidenbladh H. Multi-target particle filtering for the probability hypothesis density. In: Proceedings of the 6th International Conference of Information Fusion. Cairns, Queensland, Australia: IEEE, 2003. 800-806
    [144] Vo B N, Singh S, Doucet A. Sequential Monte Carlo methods for multi-target filtering with random finite sets. IEEE Transactions on Aerospace and Electronic Systems, 2005, 41(4): 1224-1245
    [145]
    [146] Houssineau J, Laneuville D. PHD filter with diffuse spatial prior on the birth process with applications to GM-PHD filter. In: Proceedings of the 13th Conference on Information Fusion. Edinburgh: IEEE, 2010. 1-8
    [147] Johansen A M, Singh S S, Doucet A, Vo B N. Convergence of the SMC implementation of the PHD filter. Methodology and Computing in Applied Probability, 2006, 8(2): 265-291
    [148] Clark D E, Bell J. Convergence results for the particle PHD filter. IEEE Transactions on Signal Processing, 2006, 54(7): 2652-2661
    [149] Braca P, Marano S, Matta V, Willett P. Asymptotic efficiency of the PHD in multitarget/multisensor estimation. IEEE Journal of Selected Topics in Signal Processing, 2013, 7(3): 553-564
    [150] Nandakumaran N, Punithakumar K, Kirubarajan T. Improved multi-target tracking using probability hypothesis density smoothing. In: Proceedings of the SPIE 6699, Signal and Data Processing of Small Targets. San Diego, CA: SPIE, 2007
    [151] Mahler R P S, Vo B N, Vo B T. Forward-backward probability hypothesis density smoothing. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(1): 707-728
    [152] Punithakumar K, Kirubarajan T, Sinha A. Multiple-model probability hypothesis density filter for tracking maneuvering targets. IEEE Transactions on Aerospace and Electronic Systems, 2008, 44(1): 87-98
    [153] Lian Feng, Han Chong-Zhao, Liu Wei-Feng, Yuan Xiang-Hui. Multiple-model probability hypothesis density smoother. Acta Automatica Sinica, 2010, 36(7): 939-950 (连峰, 韩崇昭, 刘伟峰, 元向辉. 多模型概率假设密度平滑器. 自动化学报, 2010, 36(7): 939-950)
    [154] Petetin Y, Desbouvries F. Bayesian multi-object filtering for pairwise Markov chains. IEEE Transactions on Signal Processing, 2013, 61(18): 4481-4490
    [155] Pace M, Del Moral P. Mean-field PHD filters based on generalized Feynman-Kac flow. IEEE Journal of Selected Topics in Signal Processing, 2013, 7(3): 484-495
    [156] Mahler R. Tracking targets with pairwise-Markov dynamics. In: Proceedings of the 18th International Conference on Information Fusion. Washington, DC: IEEE, 2015. 280-286
    [157] Streit R L, Stone L D. Bayes derivation of multitarget intensity filters. In: Proceedings of the 11th International Conference on Information Fusion. Cologne: IEEE, 2008. 1-8
    [158] Streit R. The probability generating functional for finite point processes, and its application to the comparison of PHD and intensity filters. Journal of Advances in Information Fusion, 2013, 8(2): 119-132
    [159] Whiteley N, Singh S, Godsill S. Auxiliary particle implementation of probability hypothesis density filter. IEEE Transactions on Aerospace and Electronic Systems, 2010, 46(3): 1437-1454
    [160] Schikora M, Gning A, Mihaylova L, Cremers D, Koch W. Box-particle PHD filter for multi-target tracking. In: Proceedings of the 15th International Conference on Information Fusion. Singapore: IEEE, 2012. 106-113
    [161] Vihola M. Rao-Blackwellised particle filtering in random set multitarget tracking. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(2): 689-705
    [162] Clark D, Vo B T, Vo B N. Gaussian particle implementations of probability hypothesis density filters. In: Proceedings of the 2007 IEEE Aerospace Conference. Big Sky, Montana: IEEE, 2007. 1-11
    [163] Li T C, Sun S D, Sattar T P. High-speed sigma-gating SMC-PHD filter. Signal Processing, 2013, 93(9): 2586-2593
    [164] Shi Z G, Liu Y K, Hong S H, Chen J M, Shen X M. POSE: design of hardware-friendly particle-based observation selection PHD filter. IEEE Transactions on Industrial Electronics, 2014, 61(4): 1944-1956
    [165] Del Coco M, Cavallaro A. Parallel particle-PHD filter. In: Proceedings of the 2014 International Conference on Acoustics, Speech and Signal Processing. Florence, Italy: IEEE, 2014. 6578-6582
    [166] Clark D, Mahler R. Generalized PHD filters via a general chain rule. In: Proceedings of the 15th International Conference on Information Fusion. Singapore: IEEE, 2012. 157-164
    [167] Delande E, Uney M, Houssineau J, Clark D. Regional variance for multi-object filtering. IEEE Transactions on Signal Processing, 2014, 62(13): 3415-3428
    [168] Vo B T, Vo B N, Cantoni A. Analytic implementations of the Cardinalized probability hypothesis density filter. IEEE Transactions on Signal Processing, 2007, 55(7): 3553-3567
    [169] Mahler R. Statistics 102 for multisource-multitarget detection and tracking. IEEE Journal of Selected Topics in Signal Processing, 2013, 7(3): 376-389
    [170] Mahler R. Linear-complexity CPHD filters. In: Proceedings of the 13th Conference on Information Fusion. Edinburgh, Scotland, United Kingdom: IEEE, 2010. 1-8
    [171] Nannuru S, Coates M, Mahler R. Computationally-tractable approximate PHD and CPHD filters for superpositional sensors. IEEE Journal of Selected Topics in Signal Processing, 2013, 7(3): 410-420
    [172] Ouyang C, Ji H, Li C. Improved multi-target multi-Bernoulli filter. IET Radar, Sonar Navigation, 2012, 6(6): 458-464
    [173] Dunne D, Kirubarajan T. Multiple model multi-Bernoulli filters for manoeuvering targets. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(4): 2679-2692
    [174] Lian F, Li C, Han C Z, Chen H. Convergence analysis for the SMC-MeMBer and SMC-CBMeMBer filters. Journal of Applied Mathematics, 2012, 2012: Article ID 584140
    [175] Reuter S, Vo B T, Vo B N, Dietmayer K. The labeled Multi-Bernoulli filter. IEEE Transactions on Signal Processing, 2014, 62(12): 3246-3260
    [176] Vo B N, Vo B T, Phung D. Labeled random finite sets and the Bayes multi-target tracking filter. IEEE Transactions on Signal Processing, 2014, 62(24): 6554-6567
    [177] Papi F, Vo B N, Vo B T, Fantacci C, Beard M. Generalized labeled multi-Bernoulli approximation of multi-object densities. IEEE Transactions on Signal Processing, 2015, 63(20): 5487-5497
    [178] Papi F, Du Y K. A particle multi-target tracker for superpositional measurements using labeled random finite sets. IEEE Transactions on Signal Processing, 2015, 63(16): 4348-4358
    [179] Vo B T, Vo B N, Hoseinnezhad R, Mahler R P S. Robust multi-Bernoulli filtering. IEEE Journal of Selected Topics in Signal Processing, 2013, 7(3): 399-409
    [180] Wang B L, Yi W, Li S Q, Morelande M R, Kong L J, Yang X B. Distributed multi-target tracking via generalized multi-Bernoulli random finite sets. In: Proceedings of the 18th International Conference on Information Fusion. Washington, DC: IEEE, 2015. 253-261
    [181] Koch W, van Keuk G. Multiple hypothesis track maintenance with possibly unresolved measurements. IEEE Transactions on Aerospace and Electronic Systems, 1997, 33(3): 883-892
    [182] Lian F, Han C Z, Liu W F, Liu J, Sun J. Unified cardinalized probability hypothesis density filters for extended targets and unresolved targets. Signal Processing, 2012, 92(7): 1729-1744
    [183] Drummond O E, Blackman S S, Petrisor G C. Tracking clusters and extended objects with multiple sensors. In: Proceedings of the SPIE 1305, Signal and Data Processing of Small Targets. Los Angeles, CA, 1990. 362-375
    [184] Koch J W. Bayesian approach to extended object and cluster tracking using random matrices. IEEE Transactions on Aerospace and Electronic Systems, 2008, 44(3): 1042-1059
    [185] Lan J, Li X R. Tracking of maneuvering non-ellipsoidal extended object or target group using random matrix. IEEE Transactions on Signal Processing, 2014, 62(9): 2450-2463
    [186] Granstrom K, Orguner U. On Spawning and combination of extended/group targets modeled with random matrices. IEEE Transactions on Signal Processing, 2013, 61(3): 678-692
    [187] Mahler R. PHD filters for nonstandard targets, I: extended targets. In: Proceedings of the 12th International Conference on Information Fusion. Seattle WA: IEEE, 2009. 915-921
    [188] Li Y X, Xiao H T, Song Z Y, Hu R, Fan H Q. A new multiple extended target tracking algorithm using PHD filter. Signal Processing, 2013, 93(12): 3578-3588
    [189] Hammarstrand L, Lundgren M, Svensson L. Adaptive radar sensor model for tracking structured extended objects. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(3): 1975-1995
    [190] Clark D E, Houssineau J. Faa di Bruno's formula for Gateaux differentials and interacting stochastic population processes. 2012, arXiv: 1202.0264
    [191] Swain A, Clark D. The single-group PHD filter: an analytic solution. In: Proceedings of the 14th International Conference on Information Fusion. Chicago, Illinois, USA: IEEE, 2011. 1-8
    [192] Gning A, Mihaylova L, Maskell S, Pang S K, Godsill S. Group object structure and state estimation with evolving networks and Monte Carlo methods. IEEE Transactions on Signal Processing, 2011, 59(4): 1383-1395
    [193] Li Zhen-Xing, Liu Jin-Mang, Li Song, Bai Dong-Ying, Ni Peng. Group targets tracking algorithm based on box particle filter. Acta Automatica Sinica, 2015, 41(4): 785-798 (李振兴, 刘进忙, 李松, 白东颖, 倪鹏. 基于箱式粒子滤波的群目标跟踪算法. 自动化学报, 2015, 41(4): 785-798)
    [194] Sathyan T, Chin T J, Arulampalam S, Suter D. A multiple hypothesis tracker for multitarget tracking with multiple simultaneous measurements. IEEE Journal of Selected Topics in Signal Processing, 2013, 7(3): 448-460
    [195] Vo B N, Vo B T, Pham N T, Suter D. Joint detection and estimation of multiple objects from image observations. IEEE Transactions on Signal Processing, 2010, 58(10): 5129-5141
    [196] Lian Feng, Lv Ning, Han Chong-Zhao. The recursive form of error bound for joint detection and estimation of groups. Acta Automatica Sinica, 2015, 41(12): 1990-1999 (连峰, 吕宁, 韩崇昭. 群目标联合检测与估计误差界的递推形式. 自动化学报, 2015, 41(12): 1990-1999)
    [197] Li X R. Optimal Bayes joint decision and estimation. In: Proceedings of the 10th International Conference on Information Fusion. Quebec City, Canada: IEEE, 2007. 1-6
    [198] Davey S J, Rutten M G, Cheung B. A comparison of detection performance for several track-before-detect algorithms. In: Proceedings of the 11th International Conference on Information Fusion. Cologne: IEEE, 2008. 1-8
    [199] Fritsche C, Ozkan E, Svensson L, Gustafsson F. A fresh look at Bayesian Cramr-Rao bounds for discrete-time nonlinear filtering. In: Proceedings of the 17th International Conference on Information Fusion. Salamanca, Spain: IEEE, 2014. 1-8
    [200] Tulsyan A, Huang B, Gopaluni R B, Forbes J F. Performance assessment, diagnosis, and optimal selection of non-linear state filters. Journal of Process Control, 2014, 24(2): 460-478
    [201] Caron F, Del Moral P, Doucet A, Pace M. Particle approximation of the intensity measures of a spatial branching point process arising in multitarget tracking. SIAM Journal on Control and Optimization, 2011, 49(4): 1766-1792
    [202] Datta Gupta S, Coates M, Rabbat M. Error propagation in Gossip-based distributed particle filters. IEEE Transactions on Signal and Information Processing over Networks, 2015, 1(3): 148-163
    [203] Zhou Y, Li J X, Wang D L. Posterior Cramr-Rao lower bounds for target tracking in sensor networks with quantized range-only measurements. IEEE Signal Processing Letters, 2010, 17(2): 157-160
    [204] Carvalho C M, Johannes M S, Lopes H F, Polson N G. Particle learning and smoothing. Statistical Science, 2010, 25(1): 88-106
    [205] Yang J L, Ge H W. An improved multi-target tracking algorithm based on CBMeMber filter and variational Bayesian approximation. Signal Processing, 2013, 93(9): 2510-2515
    [206] Mahler R P S, Vo B T, Vo B N. CPHD Filtering with unknown clutter rate and detection profile. IEEE Transactions on Signal Processing, 2011, 59(8): 3497-3513
    [207] Lian F, Han C Z, Liu W F. Estimating unknown clutter intensity for PHD filter. IEEE Transactions on Aerospace and Electronic Systems, 2010, 46(4): 2066-2078
    [208] Yan Xiao-Xi, Han Chong-Zhao. Multiple target tracking algorithm based on online estimation of target birth intensity. Acta Automatica Sinica, 2011, 37(8): 963-972 (闫小喜, 韩崇昭. 基于目标出生强度在线估计的多目标跟踪算法. 自动化学报, 2011, 37(8): 963-972)
    [209] Ristic B, Clark D, Vo B N, Vo B T. Adaptive target birth intensity for PHD and CPHD filters. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(2): 1656-1668
    [210] Li T C, Sun S D, Corchado J M, Siyau M F. Random finite set-based Bayesian filters using magnitude-adaptive target birth intensity. In: Proceedings of the 17th International Conference on Information Fusion. Salamanca, Spain: IEEE, 2014. 1-8
    [211] Clark D E, Bell J. Multi-target state estimation and track continuity for the particle PHD filter. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(4): 1441-1453
    [212] Dunne D, Ratnasingham T, Lang T, Kirubarajan T. SMC-PHD-based multi-target tracking with reduced peak extraction. In: Proceedings of the SPIE 7445, Signal and Data Processing of Small Targets. San Diego, CA: SPIE, 2009. 74450F-1-74450F-12
    [213] Liu W F, Han C Z, Lian F, Zhu H Y. Multitarget state extraction for the PHD filter using MCMC approach. IEEE Transactions on Aerospace and Electronic Systems, 2010, 46(2): 864-883
    [214] Tobias M, Lanterman A D. Techniques for birth-particle placement in the probability hypothesis density particle filter applied to passive radar. IET Radar, Sonar and Navigation, 2008, 2(5): 351-365
    [215] Tang X, Wei P. Multi-target state extraction for the particle probability hypothesis density filter. IET Radar, Sonar and Navigation, 2011, 5(8): 877-883
    [216] Xu B L, Xu H G, Zhu J H. Ant clustering PHD filter for multiple-target tracking. Applied Soft Computing, 2011, 11(1): 1074-1086
    [217] Zhao L L, Ma P J, Su X H. An improved peak extraction algorithm for probability hypothesis density particle filter. Advanced Science Letters, 2012, 6(1): 88-95
    [218] Lin L K, Xu H, Sheng W D, An W. Multi-target state-estimation technique for the particle probability hypothesis density filter. Science China Information Sciences, 2012, 55(10): 2318-2328
    [219] Zhao L L, Ma P J, Su X H, Zhang H T. A new multi-target state estimation algorithm for PHD particle filter. In: Proceedings of the 13th International Conference on Information Fusion. Edinburgh, UK: IEEE, 2010. 1-8
    [220] Ristic B, Clark D, Vo B N. Improved SMC implementation of the PHD filter. In: Proceedings of the 13th International Conference on Information Fusion. Edinburgh, UK: IEEE, 2010. 1-8
    [221] Schikora M, Koch W, Streit R, Cremers D. A sequential Monte Carlo method for multi-target tracking with the intensity filter. Advances in Intelligent Signal Processing and Data Mining: Theory and Applications. Berlin Heidelberg: Springer, 2013, 410: 55-87
    [222] Bozdogan A O, Efe M, Streit R. Reduced palm intensity for track extraction. In: Proceedings of the 16th International Conference on Information Fusion. Istanbul, Turkey: IEEE, 2013. 1243-1250
    [223] Li T, Corchado J M, Sun S. Multi-EAP: Extended EAP for Multiple Estimate Extraction for the SMC-PHD Filter. Technical report, Spain: University of Salamanca, 2014
    [224] Degen C, Govaers F, Koch W. Track maintenance using the SMC-intensity filter. In: Proceedings of the 2012 Workshop on Sensor Data Fusion: Trends, Solutions, Applications (SDF). Bonn, Germany: IEEE, 2012. 7-12
    [225] Lin L, Bar-shalom Y, Kirubajan T. Track labeling and PHD filter for multitarget tracking. IEEE Transactions on Aerospace and Electronic Systems, 2006, 42(3): 778-795
    [226] Panta K, Vo B N, Singh S. Novel data association schemes for the probability hypothesis density filter. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(2): 556-570
    [227] Danu D G, Lang T, Kirubarajan T. Assignment-based particle labeling for PHD particle filter. In: Proceedings of the SPIE 7445, Signal and Data Processing of Small Targets. San Diego, CA: SPIE, 2009.
    [228] Yang J L, Ji H B. A novel track maintenance algorithm for PHD/CPHD filter. Signal Processing, 2012, 92(10): 2371-2380
    [229] Lin L K, Xu H, An W, Sheng W D, Xu D. Tracking a large number of closely spaced objects based on the particle probability hypothesis density filter via optical sensor. Optical Engineering, 2011, 50(11): 6401
    [230] Garcia-Fernandez A F, Morelande M R, Grajal J, Bayesian sequential track formation. IEEE Transactions on Signal Processing, 2014, 62(24): 6366-6379
    [231] Li T C, Sun S D, Corchado J M, Siyau M F. A particle dyeing approach for track continuity for the SMC-PHD filter. In: Proceedings of the 2014 17th International Conference on Information Fusion. Salamanca, Spain: IEEE, 2014. 1-8
    [232] Aoki E H, Boers Y, Svensson L, Mandal P, Bagchi A. A Bayesian look at the optimal track labelling problem. In: Proceedings of the 9th IET Data Fusion Target Tracking Conference: Algorithms Applications. London: IET, 2012. 1-6
    [233] Svensson L, Morelande M. Target tracking based on estimation of sets of trajectories. In: Proceedings of the 17th International Conference on Information Fusion. Salamanca, Spain: IEEE, 2014. 1-8
    [234] Georgescu R, Willett P, Svensson L, Morelande M. Two linear complexity particle filters capable of maintaining target label probabilities for targets in close proximity. In: Proceedings of the 15th International Conference on Information Fusion. Singapore: IEEE, 2012. 2370-2377
    [235] Coraluppi S, Carthel C. Multi-stage multiple-hypothesis tracking. Journal of Advances in Information Fusion, 2011, 6(1): 57-67
    [236] Coraluppi S, Guerriero M, Willett P, Carthel C. Fuse-before-track in large sensor networks. Journal of Advances in Information Fusion, 2010, 5(1): 18-31
    [237] Li X R, Zhao Z L. Evaluation of estimation algorithms Part I: Incomprehensive measures of performance. IEEE Transactions on Aerospace and Electronic Systems, 2006, 42(4): 1340-1358
    [238] Schuhmacher D, Vo B T, Vo B N. A consistent metric for performance evaluation of multi-object filters. IEEE Transactions on Signal Processing, 2008, 56(8): 3447-3457
    [239] Ristic B, Vo B N, Clark D, Vo B T. A Metric for performance evaluation of multi-target tracking algorithms. IEEE Transactions on Signal Processing, 2011, 59(7): 3452-3457
    [240] Nagappa S, Clark D E, Mahler R. Incorporating track uncertainty into the OSPA metric. In: Proceedings of the 14th International Conference on Information Fusion. Chicago, USA: IEEE, 2011. 1-8
    [241] Vu T, Evans R. A new performance metric for multiple target tracking based on optimal subpattern assignment. In: Proceedings of the 17th International Conference on Information Fusion. Salamanca, Spain: IEEE, 2014. 1-8
    [242] Svensson L, Svensson D, Guerriero M, Willett P. Set JPDA filter for multitarget tracking. IEEE Transactions on Signal Processing, 2011, 59(10): 4677-4691
    [243] Crouse D F, Willett P, Svensson L, Svensson D, Guerriero M. The set MHT. In: Proceedings of the 14th International Conference on Information Fusion. Chicago, USA: IEEE, 2011. 1-8
    [244] Balasingam B, Baum M, Willett P. MMOSPA estimation with unknown number of objects. In: Proceedings of the 2015 IEEE China Summit and International Conference on Signal and Information Processing. Chengdu, China: IEEE, 2015. 706-710
    [245] Zhang L, Lan J, Li X R. A method for evaluating performance of joint tracking and classification. In: Proceedings of the 18th International Conference on Information Fusion. Washington, DC, USA: IEEE, 2015. 499-506
    [246] Barrios P, Naqvi G, Adams M, Leung K, Inostroza F. The cardinalized optimal linear assignment (COLA) metric for multi-object error evaluation. In: Proceedings of the 18th International Conference on Information Fusion. Washington, DC, USA: IEEE, 2015. 271-279
  • [1] 陆耿虹, 冯冬芹. 基于粒子滤波的工业控制网络态势感知建模[J]. 自动化学报, 2018, 44(8): 1405-1412. doi: 10.16383/j.aas.2017.c160830
    [2] 熊志刚, 黄树彩, 赵炜, 苑智玮, 徐晨洋. 均方根嵌入式容积粒子PHD多目标跟踪方法[J]. 自动化学报, 2017, 43(2): 238-247. doi: 10.16383/j.aas.2017.c150881
    [3] 张光华, 韩崇昭, 连峰, 曾令豪. Pairwise马尔科夫模型下的势均衡多目标多伯努利滤波器[J]. 自动化学报, 2017, 43(12): 2100-2108. doi: 10.16383/j.aas.2017.c160430
    [4] 张宏欣, 周穗华, 张伽伟. 磁偶极子跟踪的渐进贝叶斯滤波方法[J]. 自动化学报, 2017, 43(5): 822-834. doi: 10.16383/j.aas.2017.c160052
    [5] 田梦楚, 薄煜明, 陈志敏, 吴盘龙, 赵高鹏. 萤火虫算法智能优化粒子滤波[J]. 自动化学报, 2016, 42(1): 89-97. doi: 10.16383/j.aas.2016.c150221
    [6] 黄玉龙, 张勇刚, 李宁, 赵琳. 一种改进的高斯近似滤波方法[J]. 自动化学报, 2016, 42(3): 385-401. doi: 10.16383/j.aas.2016.c150340
    [7] 张勇刚, 黄玉龙, 赵琳. 一种带多步随机延迟量测高斯滤波器的一般框架解[J]. 自动化学报, 2015, 41(1): 122-135. doi: 10.16383/j.aas.2015.c140293
    [8] 张勇刚, 黄玉龙, 李宁, 赵琳. 带一步随机延迟量测非线性序列贝叶斯估计的条件后验克拉美罗下界[J]. 自动化学报, 2015, 41(3): 559-574. doi: 10.16383/j.aas.2015.c140391
    [9] 杨峰, 王永齐, 梁彦, 潘泉. 基于概率假设密度滤波方法的多目标跟踪技术综述[J]. 自动化学报, 2013, 39(11): 1944-1956. doi: 10.3724/SP.J.1004.2013.01944
    [10] 欧阳成, 姬红兵, 郭志强. 改进的多模型粒子PHD和CPHD滤波算法[J]. 自动化学报, 2012, 38(3): 341-348. doi: 10.3724/SP.J.1004.2012.00341
    [11] 沈乐君, 游志胜, 李晓峰. 自助重要性采样用于实时多目标视觉跟踪[J]. 自动化学报, 2012, 38(10): 1663-1670. doi: 10.3724/SP.J.1004.2012.01663
    [12] 赵顺毅, 刘飞. 非线性非齐次Markov跳变系统的贝叶斯滤波[J]. 自动化学报, 2012, 38(3): 485-490. doi: 10.3724/SP.J.1004.2012.00485
    [13] 闫小喜, 韩崇昭. 基于目标出生强度在线估计的多目标跟踪算法[J]. 自动化学报, 2011, 37(8): 963-972. doi: 10.3724/SP.J.1004.2011.00963
    [14] 张共愿, 程咏梅, 杨峰, 潘泉, 梁彦. 基于方差缩减技术的一种自适应粒子滤波器设计[J]. 自动化学报, 2010, 36(7): 1020-1024. doi: 10.3724/SP.\,J.1004.2010.01020
    [15] 赵玲玲, 马培军, 苏小红. 一种快速准蒙特卡罗粒子滤波算法[J]. 自动化学报, 2010, 36(9): 1351-1356. doi: 10.3724/SP.J.1004.2010.01351
    [16] 王文斐, 熊蓉, 褚健. 基于粒子滤波和点线相合的未知环境地图构建方法[J]. 自动化学报, 2009, 35(9): 1185-1192. doi: 10.3724/SP.J.1004.2009.01185
    [17] 侯代文, 殷福亮, 陈喆. 基于拟蒙特卡洛滤波的说话人跟踪方法[J]. 自动化学报, 2009, 35(7): 1016-1021. doi: 10.3724/SP.J.1004.2009.01016
    [18] 段琢华, 蔡自兴, 于金霞. 不完备多模型混合系统故障诊断的粒子滤波算法[J]. 自动化学报, 2008, 34(5): 581-587. doi: 10.3724/SP.J.1004.2008.00581
    [19] 胡昌华, 张琪, 乔玉坤. 强跟踪粒子滤波算法及其在故障预报中的应用[J]. 自动化学报, 2008, 34(12): 1522-1528. doi: 10.3724/SP.J.1004.2008.01522
    [20] 倪林, 边肇祺, 王文渊. 一类新的知识型指纹图像非线性滤波方法[J]. 自动化学报, 1997, 23(5): 628-635.
  • 加载中
计量
  • 文章访问数:  2176
  • HTML全文浏览量:  57
  • PDF下载量:  3526
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-07-06
  • 修回日期:  2015-11-02
  • 刊出日期:  2015-12-20

粒子滤波理论、方法及其在多目标跟踪中的应用

doi: 10.16383/j.aas.2015.c150426
    作者简介:

    范红旗国防科学技术大学自动目标识别重点实验室副教授. 2008 年获得国防科学技术大学信息与通信工程博士学位.主要研究方向为雷达信号与数据处理,目标跟踪与信息融合, 多智能体系统.E-mail: fhongqi@gmail.com

    通讯作者: 李天成西班牙萨拉曼卡大学科学院BISITE 组博士后, 2008 年获得哈尔滨工程大学工学与管理学(辅) 双学士学位, 2013 年获得英国伦敦南岸大学电子电气工程专业博士学位, 2015 年获得西北工业大学机械电子工程专业博士学位.主要研究方向为统计信号处理、信息融合与分布式计算, 特别是粒子滤波以及多目标跟踪.本文通信作者.
基金项目:

国家自然科学基金(51475383),国家自然科学基金青年基金(61101186),航空科学基金(20110112006)资助

摘要: 本文梳理了粒子滤波理论基本内容、发展脉络和最新研究进展, 特别是对其在多目标跟踪应用中的一系列难点问题与主流解决思路进行了详细分析和报道. 常规粒子滤波研究重点主要围绕重要性采样函数、计算效率、权值退化/样本匮乏和复杂系统建模展开. 作为一类复杂估计问题,多目标跟踪一方面需要准确的目标新生/消亡与演变、虚警/漏检等建模技术, 另一方面需要多传感器信息融合、航迹管理等复杂决策方法.暨有限集统计学应用于多目标跟踪后,粒子 滤波进入一个新的发展阶段---随机集粒子滤波.基于不同的背景假设,可以构建不同近似形式的随机集贝 叶斯滤波器并采用粒子滤波实现.但机动目标、未知场景、多目标航迹管理以及跟踪性能评价等仍是多 目标粒子滤波的研究难点和重点.

English Abstract

参考文献 (246)

目录

    /

    返回文章
    返回