2.793

2018影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于蛙眼R3细胞感受野模型的运动滤波方法

李智勇 何霜 刘俊敏 李仁发

李智勇, 何霜, 刘俊敏, 李仁发. 基于蛙眼R3细胞感受野模型的运动滤波方法. 自动化学报, 2015, 41(5): 981-990. doi: 10.16383/j.aas.2015.c140810
引用本文: 李智勇, 何霜, 刘俊敏, 李仁发. 基于蛙眼R3细胞感受野模型的运动滤波方法. 自动化学报, 2015, 41(5): 981-990. doi: 10.16383/j.aas.2015.c140810
LI Zhi-Yong, HE Shuang, LIU Jun-Min, LI Ren-Fa. Motion Filtering by Modelling R3 Cell's Receptive Field in Frog Eyes. ACTA AUTOMATICA SINICA, 2015, 41(5): 981-990. doi: 10.16383/j.aas.2015.c140810
Citation: LI Zhi-Yong, HE Shuang, LIU Jun-Min, LI Ren-Fa. Motion Filtering by Modelling R3 Cell's Receptive Field in Frog Eyes. ACTA AUTOMATICA SINICA, 2015, 41(5): 981-990. doi: 10.16383/j.aas.2015.c140810

基于蛙眼R3细胞感受野模型的运动滤波方法


DOI: 10.16383/j.aas.2015.c140810
详细信息
    作者简介:

    何霜湖 南大学信息科学与工程学院硕士研究生. 2012 年获得湖南商学院学士学位. 主要研究方向为图像处理, 运动目标跟踪.E-mail: heshuang@hnu.edu.cn

    通讯作者: 李智勇 湖南大学教授. 主要研究方向为动态多目标优化, 量子进化计算, 图像理解与视觉认知计算. E-mail: zhiyong.li@hnu.edu.cn
  • 基金项目:

    国家高技术研究发展计划(863计划) (2012AA01A301-01),国家自然科学基金(91320103), 广东省省部产学研结合项目(2012A090300003),广东省科技计划项目(2013B090700003)资助

Motion Filtering by Modelling R3 Cell's Receptive Field in Frog Eyes

More Information
  • Fund Project:

    Supported by National High Technology Research and Development Program of China (863 Program) (2012AA01A301-01), National Natural Science Foundation of China (91320103), Special Project on the Integration of Industry, Education and Research of Guangdong Province (2012A090300003), and Science and Technology Planning Project of Guangdong Province (2013B090700003)

  • 摘要: 视觉感受野(Visual receptive field)模型作为生物视觉感知计算的基础单元,在整个生物视觉信息加工过程中发挥着重要作用.借鉴具有运动视觉特长的生物感受野特性研究高效的运动视觉计算技术,是一种潜在可行的方法.本文基于蛙眼R3细胞感受野,在高斯差分模型(Difference of Gaussians, DOG)的基础上引入时间和空间各向异性的运动视觉表达方式, 提出一种基于蛙眼R3细胞的不对称各向异性感受野(Asymmetric anisotropy receptive field, AARF)模型,表达蛙类视觉系统对运动目标敏感的视觉时空特征.基于该运动视觉模型,进一步提出了一种面向序列图像运动目标分析的蛙眼时空运动滤波算子(Frog-based spatio-temporal motion filter, FSTMF),以实现运动目标准确检测与分析.实验结果表明,该方法具有使序列图像背景模糊、动态目标突显的滤波效果,既符合蛙眼视觉背景模糊而前景清晰的特性,也为下一步运动目标的准确检测实现了高效的预处理.
  • [1] Zhang Zhen, Chen Zhe, Lv Li, Wang Xin, Xu Li-Zhong. Adaptive background suppression method based on visual receptive field. Chinese Journal of Scientific Instrument, 2014, 35(1): 191-199(张振, 陈哲, 吕莉, 王鑫, 徐立中. 基于视觉感受野的自适应背景抑制方法. 仪器仪表学报, 2014, 35(1): 191-199)
    [2] [2] Lee Y. A Neural Network Model of Frog Retina: A Discrete Time-Space Approach. Massachusetts Amherst: University of Massachusetts Amherst, 1986, 10: 415-426
    [3] [3] Nishio K, Yonezu H, Furukawa Y. Analog integrated circuit for motion detection with simple-shape recognition based on frog vision system. Optical Review, 2007, 14(5): 271-281
    [4] Zhao Liang, Wang Tian-Zhen, Liu Yong-Hong. Research on frog visual behavior and its computer simulation. Journal of Wuhan University of Technology (Information Management Engineering), 2003, 25(4): 1-5(赵亮, 王天珍, 刘永红. 青蛙视觉行为与计算机模拟概述. 武汉理工大学学报(信息与管理工程版), 2003, 25(4): 1-5)
    [5] Wang Zhi-Ling, Chen Zong-Hai, Xu Xiao-Xiao, Wu Liang. A fuzzy region understanding tactic for object tracking based on frog's vision characteristic. Acta Automatica Sinica, 2009, 35(8): 1048-1054(王智灵, 陈宗海, 徐萧萧, 吴亮. 基于蛙眼视觉特性的运动目标模糊化区域理解 跟踪方法. 自动化学报, 2009, 35(8): 1048-1054)
    [6] [6] Xiao S S, Gao N. Research on visual invariance based on dynamic receptive field. In: Proceedings of the 2008 International Conference on Computer Science and Software Engineering. Wuhan, China: IEEE, 2008, 1: 273-276
    [7] [7] Zhang P. Extracting visual saliency based on multi-scale receptive field template. In: Proceedings of the 2nd International Conference on Digital Manufacturing and Automation (ICDMA). Zhangjiajie, China: IEEE, 2011. 527-530
    [8] [8] Ekvall S, Kragic D. Receptive field cooccurrence histograms for object detection. In: Proceedings of the 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems. Edmonton, Alberta, Canada: IEEE, 2005. 84-89
    [9] [9] Perez C A, Salinas C A, Estevez P A, Valenzuela P M. Genetic design of biologically inspired receptive fields for neural pattern recognition. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2003, 33(2): 258-270
    [10] Yang B, Zhao Q Y, Zhang R, Yin B L. Receptive field based image modeling method for interactive segmentation. In: Proceedings of the 2nd International Congress on Image and Signal Processing. Tianjin, China: IEEE, 2009. 1-4
    [11] Lee D H, Lee J J. Incremental receptive field weighted actor-critic. IEEE Transactions on Industrial Informatics, 2013, 9(1): 62-71
    [12] Lettvin J Y, Maturana H R, Mcculloch W S, Pitts W H. What the frog's eye tells the frog's brain. Proceedings of the IRE, 1959, 47(11): 1940-1951
    [13] Hoshino N, Matsumoto N. Intracellular analysis of directional sensitivity of tectal neurons of the frog. Brain Research, 2003, 966(2): 185-193
    [14] Li Xiao-Ping, Bian Zhao-Qi, Wang Yun-Jiu. An efficient algorithm for the implementation of a 2D Gabor filtering. Acta Automatica Sinica, 1989, 15(2): 136-141(李小平, 边肇祺, 汪云九. 二维Gabor滤波器的快速实现. 自动化学报, 1989, 15(2): 136-141)
    [15] Li Xiao-Lei, Ma Miao. Contour detection based on combination of LoG filters method. Computer Technology and Development, 2014, (11): 28-31(李晓磊, 马苗. 基于组合LoG滤波方法的轮廓检测. 计算机技术与发展, 2014, (11): 28-31)
    [16] Chen Xiao-Hong. Research on Touchscreen Glass Defects Detection Methods Based on Computer Vision [Master dissertation]. South China University of Technology, China, 2013.(陈晓红. 基于机器视觉的触摸屏玻璃缺陷检测方法研究[硕士学位论文], 华南理工大学, 中国, 2013.)
    [17] Zhou Bo, Qian Kun, Ma Xu-Dong, Dai Xian-Zhong. A new nonlinear set membership filter based on guaranteed bounding ellipsoid algorithm. Acta Automatica Sinica, 2013, 39(2): 150-158)(周波, 钱堃, 马旭东, 戴先中. 一种新的基于保证定界椭球算法的非线性集员滤波器. 自动化学报, 2013, 39(2): 150-158)
    [18] Zhao Lin, Wang Xiao-Xu, Sun Ming, Ding Ji-Cheng, Yan Chao. Adaptive UKF filtering algorithm based on maximum a posterior estimation and exponential weighting. Acta Automatica Sinica, 2010, 36(7): 1007-1019(赵琳, 王小旭, 孙明, 丁继成, 闫超. 基于极大后验估计和指数加权的自适应UKF滤波算法. 自动化学报, 2010, 36(7): 1007-1019)
    [19] Zhang Gui-Mei, Zhang Song, Chu Jun. A new object detection algorithm using local contour features. Acta Automatica Sinica, 2014, 40(10): 2346-2355(张桂梅, 张松, 储珺. 一种新的基于局部轮廓特征的目标检测方法. 自动化学报, 2014, 40(10): 2346-2355)
    [20] Chen C Y, Zhao M Y. Video segmentation algorithm based on improved kirsch edge operator and three-frame difference. Advanced Materials Research, 2014, 981: 335-339
    [21] Agaian S S, Silver B, Panetta K A. Transform coefficient histogram-based image enhancement algorithms using contrast entropy. IEEE Transactions on Image Processing, 2007, 16(3): 741-758
  • [1] 唐祎玲, 江顺亮, 徐少平, 刘婷云, 李崇禧. 基于眼优势的非对称失真立体图像质量评价[J]. 自动化学报, 2019, 45(11): 2092-2106. doi: 10.16383/j.aas.c190124
    [2] 熊熙, 乔少杰, 吴涛, 吴越, 韩楠, 张海清. 基于时空特征的社交网络情绪传播分析与预测模型[J]. 自动化学报, 2018, 44(12): 2290-2299. doi: 10.16383/j.aas.2018.c170480
    [3] 杨志军, 苏杨, 丁洪伟. 完全服务和非对称门限服务两级轮询系统特性分析[J]. 自动化学报, 2018, 44(12): 2228-2237. doi: 10.16383/j.aas.2018.c180078
    [4] 刘孝艳, 冯象初, 赵晨萍. Sobolev 广义度量下的各向异性扩散模型[J]. 自动化学报, 2015, 41(2): 320-329. doi: 10.16383/j.aas.2015.c140564
    [5] 涂波, 刘璐, 刘一会, 金野, 汤俊雄. 一种扩展小孔成像模型的鱼眼相机矫正与标定方法[J]. 自动化学报, 2014, 40(4): 653-659. doi: 10.3724/SP.J.1004.2014.00653
    [6] 万九卿, 刘青云. 基于高阶时空模型的视觉传感网络数据关联方法[J]. 自动化学报, 2012, 38(2): 236-247. doi: 10.3724/SP.J.1004.2012.00236
    [7] 王旭东, 冯象初, 霍雷刚. 去除乘性噪声的重加权各向异性全变差模型[J]. 自动化学报, 2012, 38(3): 444-451. doi: 10.3724/SP.J.1004.2012.00444
    [8] 李灿飞, 王耀南, 肖昌炎, 卢笑. 用于超声斑点噪声滤波的各向异性扩散新模型[J]. 自动化学报, 2012, 38(3): 412-419. doi: 10.3724/SP.J.1004.2012.00412
    [9] 程宁, 刘文举. 基于多统计模型和人耳听觉特性的麦克风阵列后滤波语音增强算法[J]. 自动化学报, 2010, 36(1): 74-86. doi: 10.3724/SP.J.1004.2010.00074
    [10] 潘峰, 陈杰, 辛斌, 张娟. 粒子群优化方法若干特性分析[J]. 自动化学报, 2009, 35(7): 1010-1016. doi: 10.3724/SP.J.1004.2009.01010
    [11] 应时辉, 彭济根, 郑开杰, 乔红. 含各向异性尺度形变数据集匹配问题的Lie群方法[J]. 自动化学报, 2009, 35(7): 867-874. doi: 10.3724/SP.J.1004.2009.00867
    [12] 王毅, 牛瑞卿, 喻鑫, 沈焕峰. 基于时间变化的鲁棒各向异性扩散模型[J]. 自动化学报, 2009, 35(9): 1253-1256. doi: 10.3724/SP.J.1004.2009.01253
    [13] 王智灵, 陈宗海, 徐萧萧, 吴亮. 基于蛙眼视觉特性的运动目标模糊化区域理解跟踪方法[J]. 自动化学报, 2009, 35(8): 1048-1054. doi: 10.3724/SP.J.1004.2009.01048
    [14] 潘且鲁, 苏剑波, 席裕庚. 眼在手上机器人手眼无标定三维视觉跟踪[J]. 自动化学报, 2002, 28(3): 371-377.
    [15] 潘且鲁, 苏剑波, 席裕庚. 基于神经网络的机器人手眼无标定平面视觉跟踪[J]. 自动化学报, 2001, 27(2): 194-199.
    [16] 谭营, 邓超. 暂态混沌神经网络在人眼运动机制模拟中的应用[J]. 自动化学报, 1999, 25(1): 133-137.
    [17] 胡峰, 孙国基. Kalman滤波的抗野值修正[J]. 自动化学报, 1999, 25(5): 692-696.
    [18] 杨敬安. 关于视觉运动分析中凝视与跟踪作用的研究[J]. 自动化学报, 1998, 24(3): 350-354.
    [19] 项国波. 电站并联运行的不对称非线性振荡[J]. 自动化学报, 1989, 15(6): 552-556.
    [20] 倪维斗, 徐向东. 三轴燃气轮机的数学模型及其动态特性的分析[J]. 自动化学报, 1985, 11(4): 351-357.
  • 加载中
计量
  • 文章访问数:  873
  • HTML全文浏览量:  13
  • PDF下载量:  1223
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-11-25
  • 修回日期:  2015-01-19
  • 刊出日期:  2015-05-20

基于蛙眼R3细胞感受野模型的运动滤波方法

doi: 10.16383/j.aas.2015.c140810
    作者简介:

    何霜湖 南大学信息科学与工程学院硕士研究生. 2012 年获得湖南商学院学士学位. 主要研究方向为图像处理, 运动目标跟踪.E-mail: heshuang@hnu.edu.cn

    通讯作者: 李智勇 湖南大学教授. 主要研究方向为动态多目标优化, 量子进化计算, 图像理解与视觉认知计算. E-mail: zhiyong.li@hnu.edu.cn
基金项目:

国家高技术研究发展计划(863计划) (2012AA01A301-01),国家自然科学基金(91320103), 广东省省部产学研结合项目(2012A090300003),广东省科技计划项目(2013B090700003)资助

摘要: 视觉感受野(Visual receptive field)模型作为生物视觉感知计算的基础单元,在整个生物视觉信息加工过程中发挥着重要作用.借鉴具有运动视觉特长的生物感受野特性研究高效的运动视觉计算技术,是一种潜在可行的方法.本文基于蛙眼R3细胞感受野,在高斯差分模型(Difference of Gaussians, DOG)的基础上引入时间和空间各向异性的运动视觉表达方式, 提出一种基于蛙眼R3细胞的不对称各向异性感受野(Asymmetric anisotropy receptive field, AARF)模型,表达蛙类视觉系统对运动目标敏感的视觉时空特征.基于该运动视觉模型,进一步提出了一种面向序列图像运动目标分析的蛙眼时空运动滤波算子(Frog-based spatio-temporal motion filter, FSTMF),以实现运动目标准确检测与分析.实验结果表明,该方法具有使序列图像背景模糊、动态目标突显的滤波效果,既符合蛙眼视觉背景模糊而前景清晰的特性,也为下一步运动目标的准确检测实现了高效的预处理.

English Abstract

参考文献 (21)

目录

    /

    返回文章
    返回