2.793

2018影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于多尺度2D Gabor小波的视网膜血管自动分割

王晓红 赵于前 廖苗 邹北骥

王晓红, 赵于前, 廖苗, 邹北骥. 基于多尺度2D Gabor小波的视网膜血管自动分割. 自动化学报, 2015, 41(5): 970-980. doi: 10.16383/j.aas.2015.c140185
引用本文: 王晓红, 赵于前, 廖苗, 邹北骥. 基于多尺度2D Gabor小波的视网膜血管自动分割. 自动化学报, 2015, 41(5): 970-980. doi: 10.16383/j.aas.2015.c140185
WANG Xiao-Hong, ZHAO Yu-Qian, LIAO Miao, ZOU Bei-Ji. Automatic Segmentation for Retinal Vessel Based on Multi-scale 2D Gabor Wavelet. ACTA AUTOMATICA SINICA, 2015, 41(5): 970-980. doi: 10.16383/j.aas.2015.c140185
Citation: WANG Xiao-Hong, ZHAO Yu-Qian, LIAO Miao, ZOU Bei-Ji. Automatic Segmentation for Retinal Vessel Based on Multi-scale 2D Gabor Wavelet. ACTA AUTOMATICA SINICA, 2015, 41(5): 970-980. doi: 10.16383/j.aas.2015.c140185

基于多尺度2D Gabor小波的视网膜血管自动分割


DOI: 10.16383/j.aas.2015.c140185
详细信息
    作者简介:

    王晓红 中南大学生物医学工程研究所硕士研究生, 香港理工大学研究助理. 主要研究方向为图像处理, 计算机视觉与模式识别.E-mail: wangxiaohong.314@163.com

    通讯作者: 赵于前 博士, 中南大学生物医学与信息工程系教授, 中南大学信息科学与工程学院教授. 主要研究方向为图像处理,模式识别, 图像取证, 基于图像的工业检测. E-mail: zyq@csu.edu.cn
  • 基金项目:

    国家自然科学基金(61172184, 61379107, 61174210, 61402539), 教育部新世纪优秀人才支持计划(NCET-13-0603), 高等学校博士学科点专项科研基金(20130162110016), 湖南省科技基本建设基金(201311 99)资助

Automatic Segmentation for Retinal Vessel Based on Multi-scale 2D Gabor Wavelet

More Information
  • Fund Project:

    Supported by National Natural Science Foundation of China (61172184, 61379107, 61174210, 61402539), Program for New Century Excellent Talents in University of Education Ministry in China (NCET-13-0603), Specialized Research Fund for the Doctoral Program of Higher Education (20130162110016), and Program for Hunan Province Science and Technology Basic Construction (20131199)

  • 摘要: 眼底视网膜血管分割对临床视网膜疾病诊断具有重要意义. 由于视网膜血管结构微小, 血管轮廓边界模糊, 加上图像采集时噪声的影响, 视网膜血管分割非常困难. 本文提出一种视网膜血管自动分割新方法. 首先, 应用对比度受限的自适应直方图均衡法增强视网膜图像;然后, 采用不同尺度的2D Gabor小波对视网膜图像进行变换, 并分别应用形态学重构 (Morphological reconstruction, MR)和区域生长法 (Region growing, RG)对变换后的图像进行分割; 最后, 对以上两种方法分割的视网膜血管和背景像素点重新标记识别, 得到视网膜血管最终分割结果. 通过对DRIVE和STARE数据库视网膜图像的分割实验, 证明了该算法的有效性.
  • [1] Martinez-Perez M E, Hughes A D, Thom S A, Bharath A A, Parker K H. Segmentation of blood vessels from red-free and fluoresce in retinal images. Medical Image Analysis, 2007, 11(1): 47-61
    [2] [2] Ramlugun G S, Nagarajan V K, Chakraborty C. Small retinal vessels extraction towards proliferative diabetic retinopathy screening. Expert Systems with Applications, 2012, 39(1): 1141-1146
    [3] [3] Fraz M M, Barman S A, Remagnino P, Hoppe A, Basit A, Uyyanonvara B, Rudnicka A R, Owen C G. An approach to localize the retinal blood vessels using bit planes and centerline detection. Computer Methods and Programs in Biomedicine, 2012, 108(2): 600-616
    [4] [4] Soares J V B, Leandro J J G, Cesar R M, Jelinek H F, Cree M J. Retinal vessel segmentation using 2-D Gabor wavelet and supervised classification. IEEE Transactions on Medical Imaging, 2006, 25(9): 1214-1222
    [5] [5] Ricci E, Perfetti R. Retinal blood vessel segmentation using line operators and support vector classification. IEEE Transactions on Medical Imaging, 2007, 26(10): 1357-1365
    [6] [6] Marn D, Aquino A, Gegndez-Arias M E, Bravo J M. A new supervised method for blood vessel segmentation in retinal images by using gray-level and moment invariants-based features. IEEE Transactions on Medical Imaging, 2011, 30(1): 146-158
    [7] [7] Fraz M M, Remagnino P, Hoppe A, Uyyanonvara B, Rudnicka A R, Owen C G, Barman S A. An ensemble classification-based approach applied to retinal blood vessel segmentation. IEEE Transactions on Biomedical Engineering, 2012, 59(9): 2538-2548
    [8] [8] Chaudhuri S, Chatterjee S, Katz N, Nelson M, Goldbaum M. Detection of blood vessels in retinal images using two-dimensional matched filters. IEEE Transactions on Medical Imaging, 1989, 8(3): 263-269
    [9] [9] Hoover A D, Kouznetsova V, Goldbaum M. Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response. IEEE Transactions on Medical Imaging, 2000, 19(3): 203-210
    [10] Zhang B, Zhang L, Zhang L, Karray F. Retinal vessel extraction by matched filter with first-order derivative of Gaussian. Computers in Biology and Medicine, 2010, 40(4): 438-445
    [11] Li Q, You J, Zhang D. Vessel segmentation and width estimation in retinal images using multiscale production of matched filter responses. Expert Systems with Applications, 2012, 39(9): 7600-7610
    [12] Kaba D, Salazar-Gonzalez A G, Li Y M, Liu X H, Serag A. Segmentation of retinal blood vessels using Gaussian mixture models and expectation maximization. In: Proceedings of the 2nd International Conference on Health Information Science. Berlin, Heidelberg: Springer, 2013. 105-112
    [13] Tolias Y A, Panas S M. A fuzzy vessel tracking algorithm for retinal images based on fuzzy clustering. IEEE Transactions on Medical Imaging, 1998, 17(2): 263-273
    [14] Can A, Shen H, Turner J N, Tanenbaum H L, Roysam B. Rapid automated tracing and feature extraction from retinal fundus images using direct exploratory algorithms. IEEE Transactions on Information Technology in Biomedicine, 1999, 3(2): 125-138
    [15] Zou P, Chan P, Rockett P. A model-based consecutive scanline tracking method for extracting vascular networks from 2-D digital subtraction angiograms. IEEE Transactions on Medical Imaging, 2009, 28(2): 241-249
    [16] Yin Y, Adel M, Bourennane S. Retinal vessel segmentation using a probabilistic tracking method. Pattern Recognition, 2012, 45(4): 1235-1244
    [17] Zana F, Klein J C. Segmentation of vessel-like patterns using mathematical morphology and curvature evaluation. IEEE Transactions on Image Processing, 2001, 10(7): 1010-1019
    [18] Mendonca A M, Campilho A. Segmentation of retinal blood vessels by combing the detection of centerlines and morphological reconstruction. IEEE Transactions on Medical Imaging, 2006, 25(9): 1200-1213
    [19] Dai Pei-Shan, Wang Bo-Liang, Ju Ying. Retianl vessel segmentation and three-dimensioal reconstruction of retinal vessel. Acta Automatica Sinica, 2009, 35(9): 1168-1176 (戴培山, 王博亮, 鞠颖. 视网膜血管图像分割及眼底血管三维重建. 自动化学报, 2009, 35(9): 1168-1176)
    [20] Nguyen U T V, Bhuiyan A, Park L A F, Ramamohanarao K. An effective retinal blood vessel segmentation method using multi-scale line detection. Pattern Recognition, 2013, 46(3): 703-715
    [21] Wang Y F, Ji G R, Lin P, Trucco E. Retinal vessel segmentation using multiwavelet kernels and multiscale hierarchical decomposition. Pattern Recognition, 2013, 46(8): 2117- 2133
    [22] Zhao Y Q, Wang X H, Wang X F, Shih F Y. Retinal vessels segmentation based on level set and region growing. Pattern Recognition, 2014, 47(7): 2437-2466
    [23] Liao M, Zhao Y Q, Wang X H, Dai P S. Retinal vessel enhancement based on multi scale top-hat transformation and histogram fitting stretching. Optics and Laser Technology, 2014, 58: 56-62
    [24] Staal J, Abramoff M D, Niemeijer M, Viergever M A, Van Ginneken B. Ridge-based vessel segmentation in color images of the retina. IEEE Transactions on Medical Imaging, 2004, 23(4): 501-509
  • [1] 董辉, 张斌. 基于显著图的可变模板形态学去雾方法[J]. 自动化学报, 2019, 45(5): 877-887. doi: 10.16383/j.aas.2018.c170607
    [2] 陈智强, 王作伟, 方龙伟, 菅凤增, 吴毅红, 李硕, 何晖光. 基于机器学习和几何变换的实时2D/3D脊椎配准[J]. 自动化学报, 2018, 44(7): 1183-1194. doi: 10.16383/j.aas.2017.c160711
    [3] 雷涛, 樊养余, 罗维薇, 王履程. 矢量自对偶形态学滤波算子[J]. 自动化学报, 2015, 41(5): 1013-1023. doi: 10.16383/j.aas.2015.c140116
    [4] 李宝全, 方勇纯, 张雪波. 基于2D三焦点张量的移动机器人视觉伺服镇定控制[J]. 自动化学报, 2014, 40(12): 2706-2715. doi: 10.3724/SP.J.1004.2014.02706
    [5] 倪鼎, 马洪兵. 基于区域生长的多源遥感图像配准[J]. 自动化学报, 2014, 40(6): 1058-1067. doi: 10.3724/SP.J.1004.2014.01058
    [6] 雷涛, 樊养余, 白勃. 一类新的广义形态学混合滤波器[J]. 自动化学报, 2011, 37(2): 168-178. doi: 10.3724/SP.J.1004.2011.00168
    [7] 雷涛, 樊养余. 双算子形态学滤波器[J]. 自动化学报, 2011, 37(4): 449-463. doi: 10.3724/SP.J.1004.2011.00449
    [8] 吴秀永, 徐科, 徐金梧. 基于Gabor小波和核保局投影算法的表面缺陷自动识别方法[J]. 自动化学报, 2010, 36(3): 438-441. doi: 10.3724/SP.J.1004.2010.00438
    [9] 迟健男, 张闯, 张朝晖, 王志良. 基于反对称双正交小波重构的图像增强方法[J]. 自动化学报, 2010, 36(4): 475-487. doi: 10.3724/SP.J.1004.2010.00475
    [10] 谷军霞, 丁晓青, 王生进. 基于人体行为3D模型的2D行为识别[J]. 自动化学报, 2010, 36(1): 46-53. doi: 10.3724/SP.J.1004.2010.00046
    [11] 沈琳琳, 纪震. 采用精选Gabor小波和SVM分类的物体识别[J]. 自动化学报, 2009, 35(4): 350-355. doi: 10.3724/SP.J.1004.2009.00350
    [12] 戴培山, 王博亮, 鞠颖. 视网膜血管图像分割及眼底血管三维重建[J]. 自动化学报, 2009, 35(9): 1168-1176. doi: 10.3724/SP.J.1004.2009.01168
    [13] 汤敏. 结合形态学梯度互信息和多分辨率寻优的图像配准新方法[J]. 自动化学报, 2008, 34(3): 246-250. doi: 10.3724/SP.J.1004.2008.00246
    [14] 焦波, 李国辉, 汪彦明, 田昊. 一种基于形态学的运动车辆阴影消除方法[J]. 自动化学报, 2008, 34(7): 838-840. doi: 10.3724/SP.J.1004.2008.00838
    [15] 黄向生, 杨小帆, 王阳生. 基于提升方案的高维形态小波构造[J]. 自动化学报, 2003, 29(5): 726-732.
    [16] 唐明, 马颂德. 非参数化区域竞争方法:一种新的图像分割框架[J]. 自动化学报, 2001, 27(6): 737-743.
    [17] 谢胜利, 谢振东. 多输入-多输出2D离散系统的变结构控制[J]. 自动化学报, 2000, 26(2): 162-168.
    [18] 曹磊, 韦穗, 孔兵. 基于数学形态学的分形编码[J]. 自动化学报, 1997, 23(2): 226-231.
    [19] 罗立民, 鲍旭东, 田雪芹. 基于纹理分析的磁共振图象区域分割[J]. 自动化学报, 1995, 21(4): 504-508.
    [20] 陈鸣华, 阎平凡. 基于数学形态学的手写体数字识别方法[J]. 自动化学报, 1989, 15(3): 286-288.
  • 加载中
计量
  • 文章访问数:  1207
  • HTML全文浏览量:  27
  • PDF下载量:  1321
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-03-20
  • 修回日期:  2014-12-03
  • 刊出日期:  2015-05-20

基于多尺度2D Gabor小波的视网膜血管自动分割

doi: 10.16383/j.aas.2015.c140185
    作者简介:

    王晓红 中南大学生物医学工程研究所硕士研究生, 香港理工大学研究助理. 主要研究方向为图像处理, 计算机视觉与模式识别.E-mail: wangxiaohong.314@163.com

    通讯作者: 赵于前 博士, 中南大学生物医学与信息工程系教授, 中南大学信息科学与工程学院教授. 主要研究方向为图像处理,模式识别, 图像取证, 基于图像的工业检测. E-mail: zyq@csu.edu.cn
基金项目:

国家自然科学基金(61172184, 61379107, 61174210, 61402539), 教育部新世纪优秀人才支持计划(NCET-13-0603), 高等学校博士学科点专项科研基金(20130162110016), 湖南省科技基本建设基金(201311 99)资助

摘要: 眼底视网膜血管分割对临床视网膜疾病诊断具有重要意义. 由于视网膜血管结构微小, 血管轮廓边界模糊, 加上图像采集时噪声的影响, 视网膜血管分割非常困难. 本文提出一种视网膜血管自动分割新方法. 首先, 应用对比度受限的自适应直方图均衡法增强视网膜图像;然后, 采用不同尺度的2D Gabor小波对视网膜图像进行变换, 并分别应用形态学重构 (Morphological reconstruction, MR)和区域生长法 (Region growing, RG)对变换后的图像进行分割; 最后, 对以上两种方法分割的视网膜血管和背景像素点重新标记识别, 得到视网膜血管最终分割结果. 通过对DRIVE和STARE数据库视网膜图像的分割实验, 证明了该算法的有效性.

English Abstract

参考文献 (24)

目录

    /

    返回文章
    返回