| 
	                    [1]
	                 | 
				
					Subbarao M, Surya G. Depth from defocus: a spatial domain approach. International Journal of Computer Vision, 1994, 13(2): 271-294
					 | 
			
		
				| 
	                    [2]
	                 | 
				
					[2] Favaro P, Mennucci A, Soatto S. Observing shape from defocused images. International Journal of Computer Vision, 2003, 52(1): 25-43
					 | 
			
		
				| 
	                    [3]
	                 | 
				
					[3] Favaro P, Soatto S. A geometric approach to shape from defocus. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(2): 406-417
					 | 
			
		
				| 
	                    [4]
	                 | 
				
					[4] Favaro P, Soatto S, Burger M, Osher S J. Shape from defocus via diffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 30(2): 518-531
					 | 
			
		
				| 
	                    [5]
	                 | 
				
					[5] Zhuo S J, Sim T. Defocus map estimation from a single image. Pattern Recognition, 2011, 44(9): 1852-1858
					 | 
			
		
				| 
	                    [6]
	                 | 
				
					[6] Tang C, Hou C, Song Z. Defocus map estimation from a single image via spectrum contrast. Optics Letters, 2013, 38(10): 1706-1708
					 | 
			
		
				| 
	                    [7]
	                 | 
				
					[7] McIntosh L, Riecke B E, DiPaola S. Efficiently simulating the bokeh of polygonal apertures in a post-process depth of field shader. Computer Graphics Forum, 2012, 31(6): 1810- 1822
					 | 
			
		
				| 
	                    [8]
	                 | 
				
					[8] Kriener F, Binder T, Wille M. Accelerating defocus blur magnification. In: Proceedings of the 2013 SPIE, Volume 8667, Multimedia Content and Mobile Devices. Burlingame, California, USA, 2013. 86671Q-11
					 | 
			
		
				| 
	                    [9]
	                 | 
				
					[9] Wu J Z, Zheng C W, Hu X H, Xu F J. Rendering realistic spectral bokeh due to lens stops and aberrations. The Visual Computer, 2013, 29(1): 41-52
					 | 
			
		
				| 
	                    [10]
	                 | 
				
					Xiao Jin-Sheng, Shan Shan-Shan, Duan Peng-Fei, Tu Chao-Ping, Yi Ben-Shun. A fast image enhancement algorithm based on fusion of different color spaces. Acta Automatica Sinica, 2014, 40(4): 697-705(肖进胜, 单姗姗, 段鹏飞, 涂超平, 易本顺. 基于不同色彩空间融合的快速图像增强算法. 自动化学报, 2014, 40(4): 697-705)
					 | 
			
		
				| 
	                    [11]
	                 | 
				
					An Yao-Zu, Lu Yao, Zhao Hong. An adaptive-regularized image super-resolution. Acta Automatica Sinica, 2012, 38(4): 601-608(安耀祖, 陆耀, 赵红. 一种自适应正则化的图像超分辨率算法. 自动化学报, 2012, 38(4): 601-608)
					 | 
			
		
				| 
	                    [12]
	                 | 
				
					Zhang Y Q, Ding Y, Xiao J S, Liu J, Guo Z. Visibility enhancement using an image filtering approach. EURASIP Journal on Advances in Signal Processing, 2012, 2012(1): 1 -6
					 | 
			
		
				| 
	                    [13]
	                 | 
				
					Xiao J S, Sun L L. An iterative algorithm for maximal monotone multivalued operator equations. Acta Mathematica Scientia, 2001, 21(B2): 152-158
					 | 
			
		
				| 
	                    [14]
	                 | 
				
					Huang Zhi-Yin, Zhang Mao-Jun, Zhang Xin, Wang Wei. Multi-focus image fusion algorithm based on relative activity level. Microcomputer Information, 2009, 25(18): 289- 291(黄志银, 张茂军, 张鑫, 王炜. 基于相对清晰度的多焦距图像融合算法. 微计算机信息, 2009, 25(18): 289-291)
					 | 
			
		
				| 
	                    [15]
	                 | 
				
					Xue Qian, Yang Cheng-Yi, Wang Hua-Xiang. Alternating direction method for salt-and-pepper denoising. Acta Automatica Sinica, 2013, 39(12): 2071-2076(薛倩, 杨程屹, 王化祥. 去除椒盐噪声的交替方向法. 自动化学报, 2013, 39(12): 2071-2076)
					 | 
			
		
				| 
	                    [16]
	                 | 
				
					Chai Y, Li H F, Guo M Y. Multifocus image fusion scheme based on features of multiscale products and PCNN in lifting stationary wavelet domain. Optics Communications, 2011, 284(5): 1146-1158
					 |