2.765

2022影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种直接基于摆角约束的欠驱动桥式吊车轨迹规划方法

王鹏程 方勇纯 江紫亚

王鹏程, 方勇纯, 江紫亚. 一种直接基于摆角约束的欠驱动桥式吊车轨迹规划方法. 自动化学报, 2014, 40(11): 2414-2419. doi: 10.3724/SP.J.1004.2014.02414
引用本文: 王鹏程, 方勇纯, 江紫亚. 一种直接基于摆角约束的欠驱动桥式吊车轨迹规划方法. 自动化学报, 2014, 40(11): 2414-2419. doi: 10.3724/SP.J.1004.2014.02414
WANG Peng-Cheng, FANG Yong-Chun, IANG Zi-Ya. A Direct Swing Constraint-based Trajectory Planning Method for Underactuated Overhead Cranes. ACTA AUTOMATICA SINICA, 2014, 40(11): 2414-2419. doi: 10.3724/SP.J.1004.2014.02414
Citation: WANG Peng-Cheng, FANG Yong-Chun, IANG Zi-Ya. A Direct Swing Constraint-based Trajectory Planning Method for Underactuated Overhead Cranes. ACTA AUTOMATICA SINICA, 2014, 40(11): 2414-2419. doi: 10.3724/SP.J.1004.2014.02414

一种直接基于摆角约束的欠驱动桥式吊车轨迹规划方法

doi: 10.3724/SP.J.1004.2014.02414
基金项目: 

Supported by National Natural Science Foundation of China (61325017, 11372144), and the National Science and Technology Pillar Program of China (2013BAF07B03)

A Direct Swing Constraint-based Trajectory Planning Method for Underactuated Overhead Cranes

Funds: 

Supported by National Natural Science Foundation of China (61325017, 11372144), and the National Science and Technology Pillar Program of China (2013BAF07B03)

  • 摘要: 针对非线性桥式吊车系统,本文提出了一种新颖的基于摆角约束的轨迹规划方法.为了提高运送过程的效率和安全性,论文设计了期望轨迹以实现如下优点: 1)使台车很快到达目标位置; 2)将负载摆角抑制到可接受的范围之内; 3)当负载在目标位置停止时无残余摆动.具体而言,所设计的轨迹由三个阶段构成,每一阶段均根据抗摆和零残余摆角的要求来构造摆角曲线,在此基础上,利用桥式吊车的非线性运动学方程分析得到台车轨迹.论文引入了一种优化机制对运送时间,最大摆角等指标进行折衷考虑.文中通过仿真和实验结果表明了所设计的直接基于摆角约束的轨迹规划方法的性能.
  • [1] Ngo Q H. Adaptive sliding mode control of container cranes. IET Control Theory and Applications, 2012, 6(5): 662-668
    [2] Sun N, Fang Y C. New energy analytical results for the regulation of underactuated overhead cranes: an end-effector motion based approach. IEEE Transactions on Industrial Electronics, 2012, 59(12): 4723-4734
    [3] Peng K C C, Singhose W, Frakes D H. Hand-motion crane control using radio-frequency real-time location systems. IEEE/ASME Transactions on Mechatronics, 2012, 17(3): 464-471
    [4] Sun N, Fang Y C, Zhang X B. An increased coupling-based control method for underactuated crane systems: theoretical design and experimental implementation. Nonlinear Dynamics, 2012, 70(2): 1135-1146
    [5] Fang Y C, Wang P C, Sun N, Zhang Y C. Dynamics analysis and nonlinear control of an offshore boom crane. IEEE Trans. on Industrial Electronics, 2014, 61(1): 414-427
    [6] Ngo Q H, Hong K S. Sliding-mode antisway control of an offshore container crane. IEEE/ASME Transactions on Mechatronics, 2012, 17(2): 201-209
    [7] Zavari K, Pipeleers G, Swevers J. Gain-scheduled controller design: illustration on an overhead crane. IEEE Transactions on Industrial Electronics, 2014, 61(7): 3713-3718
    [8] Garrido S, Abderrahim M, Giménez A, Diez R, Balaguer C. Anti-swinging input shaping control of an automatic construction crane. IEEE Transactions on Automation Science and Engineering, 2008, 5(3): 549-557
    [9] Singhose W, Vaughan J. Reducing vibration by digital filtering and input shaping. IEEE Transactions on Control Systems Technology, 2011, 19(6): 1410-1420
    [10] Park M, Chwa D, Hong S. Antisway tracking control of overhead cranes with system uncertainty and actuator nonlinearity using an adaptive fuzzy sliding-mode control. IEEE Transactions on Industrial Electronics, 2008, 55(11): 3972-3984
    [11] Ma B, Fang Y, Zhang Y. Switching based emergency braking control for an overhead crane system. IET Control Theory Application, 2010, 4(9): 1739-1747
    [12] Sun N, Fang Y C, Zhang X B. Energy coupling output feedback control of a 4-DOF underactuated crane with saturated inputs. Automatica, 2013, 49(5): 1318-1325
    [13] Sun N, Fang Y C, Zhang Y D, Ma B J. A novel kinematic coupling based trajectory planning method for overhead cranes. IEEE/ASME Transactions on Mechatronics, 2012, 17(1): 166-173
    [14] Yoshida K, Matsumoto I. Load transfer control for a crane with state constraints. In: Proceedings of the American Control Conference. St. Louis, MO, USA: IEEE, 2009. 2551-2557
    [15] Sun N, Fang Y C, Zhang X B, Yuan Y H. Transportation task-oriented trajectory planning for underactuated overhead cranes using geometric analysis. IET Control Theory & Applications, 2012, 6(10): 1410-1423
    [16] Sun N, Fang Y C. An efficient online trajectory generating method for underactuated crane systems. International Journal of Robust and Nonlinear Control, 2014, 24(11): 1653-1663
    [17] Ma G, Zhou W, Chang X L. A novel particle swarm optimization algorithm based on particle migration. Applied Mathematics and Computation, 2012, 218(11): 6620-6626
    [18] Fang Y C, Ma B J, Wang P C, Zhang X B. A motion planning-based adaptive control method for an underactuated crane system. IEEE Transactions on Control Systems Technology, 2012, 20(1): 241-248
  • 加载中
计量
  • 文章访问数:  1556
  • HTML全文浏览量:  133
  • PDF下载量:  861
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-08-12
  • 修回日期:  2014-02-17
  • 刊出日期:  2014-11-20

目录

    /

    返回文章
    返回