2.765

2022影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

蛋白质相互作用网络功能模块检测的研究综述

冀俊忠 刘志军 刘红欣 刘椿年

冀俊忠, 刘志军, 刘红欣, 刘椿年. 蛋白质相互作用网络功能模块检测的研究综述. 自动化学报, 2014, 40(4): 577-593. doi: 10.3724/SP.J.1004.2014.00577
引用本文: 冀俊忠, 刘志军, 刘红欣, 刘椿年. 蛋白质相互作用网络功能模块检测的研究综述. 自动化学报, 2014, 40(4): 577-593. doi: 10.3724/SP.J.1004.2014.00577
JI Jun-Zhong, LIU Zhi-Jun, LIU Hong-Xin, LIU Chun-Nian. An Overview of Research on Functional Module Detection for Protein-protein Interaction Networks. ACTA AUTOMATICA SINICA, 2014, 40(4): 577-593. doi: 10.3724/SP.J.1004.2014.00577
Citation: JI Jun-Zhong, LIU Zhi-Jun, LIU Hong-Xin, LIU Chun-Nian. An Overview of Research on Functional Module Detection for Protein-protein Interaction Networks. ACTA AUTOMATICA SINICA, 2014, 40(4): 577-593. doi: 10.3724/SP.J.1004.2014.00577

蛋白质相互作用网络功能模块检测的研究综述

doi: 10.3724/SP.J.1004.2014.00577
基金项目: 

国家重点基础研究发展计划(973计划)(2014CB744601),国家自然科学基金(61375059,61332016),教育部博士点学科专项科研博导类基金(20121103110031),北京市教委科研计划重点项目(北京市自然科学基金重点B类项目)(KZ201410005004)资助

详细信息
    作者简介:

    刘志军 北京工业大学硕士研究生.主要研究方向为机器学习,生物数据挖掘.E-mail:lzhj@emails.bjut.edu.cn

An Overview of Research on Functional Module Detection for Protein-protein Interaction Networks

Funds: 

Supported by National Basic Research Program of China (973 Program)(2014CB744601), National Natural Science Foundation of China (61375059, 61332016), Specialized Research Fund for the Doctoral Program of Higher Education (201211031100 31), and the Beijing Municipal Education Research Plan Key Project (Beijing Municipal Fund Class B)(KZ201410005004)

  • 摘要: 蛋白质相互作用(Protein-protein interaction,PPI)网络是生命活动中一种极其重要的生物分子关系网络,利用计算方法从PPI网络中检测功能模块是目前生物信息学中一项重要的研究课题. 本文首先总结了功能模块检测过程的基本流程,说明了预处理和后处理的作用;其次,提出了一种模块检测方法的分类体系,并对其中一些代表性的检测算法进行了阐述;再次,给出了模块检测常用的数据库、评价指标和相关软件工具,并通过实验对代表性算法进行了性能对比. 最后,通过对该领域挑战性问题的分析预测了模块检测未来的研究方向,以期对相关研究提供一定的参考.
  • [1] Zhang A D. Protein Interaction Networks: Computational Analysis. Cambridge: Cambridge University Press, 2009
    [2] Li Man-Sheng, Liu Qi-Jun, Li Dong, Liu Pei-Lei, Zhu Yun-Ping. Progress of literature mining for protein-protein interaction information. Science in China (Series C), 2010, 40(9): 805-819(李满生, 刘齐军, 李栋, 刘培磊, 朱云平. 蛋白质相互作用信息的文本挖掘研究进展. 中国科学: 生命科学, 2010, 40(9): 805-819)
    [3] Ito T, Chiba T, Ozawa R, Yoshida M, Hattori M, Sakaki Y. A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proceedings of the National academy of Sciences of the United States of America, 2001, 98(8): 4569-4574
    [4] Uetz, P, Giot L, Cagney G, Mansfield T A, Judson R S, Knight J R, Lockshon D, Narayan V, Srinivasan M, Pochart P, Qureshi-Emili A, Li Y, Godwin B, Conover D, Kalbfleisch T, Vijayadamodar G, Yang M J, Johnston M, Fields S, Rothberg J M. A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature, 2000, 403(6770): 623-627
    [5] Aebersold R, Mann M. Mass spectrometry-based proteomics. Nature, 2003, 422(6928): 198-207
    [6] Ho Y, Gruhler A, Heilbut A, Bader G D, Moore L, Adams S L, Millar A, Taylor P, Bennett K, Boutilier K, Yang L Y, Wolting C, Donaldson I, Schandorff S, Shewnarane J, Vo M, Taggart J, Goudreault M, Muskat B, Alfarano C, Dewar D, Lin Z, Michalickova K, Willems A R, Sassi H, Nielsen P A, Rasmussen K J, Andersen J R, Johansen L E, Hansen L H, Jespersen H, Podtelejnikov A, Nielsen E, Crawford J, Poulsen V, Sorensen B D, Matthiesen J, Hendrickson R C, Gleeson F, Pawson T, Moran M F, Durocher D, Mann M, Hogue C W V, Figeys D, Tyers M. Systematic identification of protein complexes in saccharomyces cerevisiae by mass spectrometry. Nature, 2002, 415(6868): 180-183
    [7] Macbeath G, Schreiber S L. Printing proteins as microarrays for high-throughput function determination. Science, 2000, 289(5485): 1760-1763
    [8] Zhu H, Bilgin M, Bangham R, Hall D, Casamayor A, Bertone P, Lan N, Jansen R, Bidlingmaier S, Houfek T, Mitchell T, Miller P, Dean R A, Gerstein M, Snyder M. Global analysis of protein activities using proteome chips. Science, 2001, 293(5537): 2101-2105
    [9] Peri S, Navarro J D, Amanchy R, Kristiansen T Z, Jonnalagadda C K, Surendranath V, Niranjan V, Muthusamy B, Gandhi T K B, Gronborg M, Ibarrola N, Deshpande N, Shanker K, Shivashankar H N, Rashmi B P, Ramya M A, Zhao Z X, Chandrika K N, Padma N, Harsha H C, Yatish A J, Kavitha M P, Menezes M, Choudhury D R, Suresh S, Ghosh N, Saravana R, Chandran S, Krishna S, Joy M, Anand S K, Madavan V, Joseph A, Wong G W, Schiemann W P, Constantinescu S N, Huang L, Khosravi-Far R, Steen H, Tewari M, Ghaffari S, Blobe G C, Dang C V, Garcia J G N, Pevsner J, Jensen O N, Roepstorff P, Deshpande K S, Chinnaiyan A M, Hamosh A, Chakravarti A, Pandey A. Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome Research, 2003, 13(10): 2363-2371
    [10] Donaldson I, Martin J, de Bruijn B, Wolting C, Lay V, Tuekam B, Zhang S D, Baskin B, Bader G D, Michalickova K, Pawson T, Hogue C W V. PreBIND and textomy-mining the biomedical literature for protein-protein interactions using a support vector machine. BMC Bioinformatics, 2003, 4: 11
    [11] Corney D P A, Buxton B F, Langdon W B, Jones D T. BioRAT: extracting biological information from full-length papers. Bioinformatics, 2004, 20(17): 3206-3213
    [12] Zhang Chun-Ting. The current status and the prospect of bioinformatics. World Sci-Tech R and D, 2000, 22(6): 1720(张春霆. 生物信息学的现状与展望. 世界科技研究与发展, 2000, 22(6): 17-20)
    [13] Gavin A C, Böesche M, Krause R, Grandi P, Marzioch M, Bauer A, Schultz J, Rick J M, Michon A M, Cruciat C M, Remor M, Höfert C, Schelder M, Brajenovic M, Ruffner H, Merino A, Klein K, Hudak M, Dickson D, Rudi T, Gnau V, Bauch A, Bastuck S, Huhse B, Leutwein C, Heurtier M A, Copley R R, Edelmann A, Querfurth E, Rybin V, Drewes G, Raida M, Bouwmeester T, Bork P, Seraphin B, Kuster B, Neubauer G, Superti-Furga G. Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature, 2002, 415(6868): 141-147
    [14] Tarassov K, Messier V, Landry C R, Radinovic S, Molina M M, Shames I, Malitskaya Y, Vogel J, Bussey H, Michnick S W. An in vivo map of the yeast protein interactome. Science, 2008, 320(5882): 1465-1470
    [15] Tong A H Y, Drees B, Nardelli G, Bader G D, Brannetti B, Castagnoli L, Evangelista M, Ferracuti S, Nelson B, Paoluzi S, Quondam M, Zucconi A, Hogue C W V, Fields S, Boone C, Cesareni G. A combined experimental and computational strategy to define protein interaction networks for peptide recognition modules. Science, 2002, 295(5553): 321-324
    [16] Palla G, Derényi I, Farkas I, Vicsek T. Uncovering the overlapping community structure of complex networks in nature and society. Nature, 2005, 435(7043): 814-818
    [17] Ravasz E, Somera A L, Mongru D A, Oltvai Z N, Barabasi A L. Hierarchical organization of modularity in metabolic networks. Science, 2002, 297(5586): 1551-1555
    [18] Rives A W, Galitski T. Modular organization of cellular networks. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(3): 1128-1133
    [19] Tanay A, Sharan R, Kupiec M, Shamir R. Revealing modularity and organization in the yeast molecular network by integrated analysis of highly heterogeneous genomewide data. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(9): 2981-2986
    [20] Bu D B, Zhao Y, Cai L, Xue H, Zhu X P, Lu H C, Zhang J F, Sun S W, Ling L J, Zhang N, Li G J, Chen R S. Topological structure analysis of the protein-protein interaction network in budding yeast. Nucleic Acids Research, 2003, 31(9): 2443-2450
    [21] Glazko G, Gordon A, Mushegian A. The choice of optimal distance measure in genome-wide datasets. Bioinformatics, 2005, 21(S3): iii3-iii11
    [22] Adamcsek B, Palla G, Farkas I J, Derényi I, Vicsek T. CFinder: locating cliques and overlapping modules in biological networks. Bioinformatics, 2006, 22(8): 1021-1023
    [23] Arnau V, Mars S, Marin I. Iterative cluster analysis of protein interaction data. Bioinformatics, 2005, 21(3): 364-378
    [24] Li D, Li J, Ouyang S G, Wang J, Wu S F, Wan P, Zhu Y P, Xu X J, He F C. Protein interaction networks of Saccharomyces cerevisiae, Caenorhabditis elegans and Drosophila melanogaster: large-scale organization and robustness. Proteomics, 2006, 6(2): 456-461
    [25] Stumpf M P H, Kelly W P, Thorne T, Wiuf C. Evolution at the system level: the natural history of protein interaction networks. Trends in Ecology and Evolution, 2007, 22(7): 366-373
    [26] Strogatz S H. Exploring complex networks. Nature, 2001, 410(6854): 268-276
    [27] Sprinzak E, Sattath S, Margalit H. How reliable are experimental protein-protein interaction data? Journal of Molecular Biology, 2003, 327(5): 919-923
    [28] Brun C, Chevenet F, Martin D, Wojcik J, Guenoche A, Jacq B. Functional classification of proteins for the prediction of cellular function from a protein-protein interaction network. Genome Biology, 2004, 5(1): R6
    [29] Pei P J, Zhang A D. A topological measurement for weighted protein interaction network. In: Proceedings of the 16th IEEE Computational Systems Bioinformatics Conference. Washington DC, USA: IEEE, 2005. 268-278
    [30] Resink P. Semantic similarity in a taxonomy: an information-based measure and its application to problems of ambiguity in natural language. Journal of Artificial Intelligence Research, 1999, 11: 95-130
    [31] Jiang J J, Conrath D W. Semantic similarity based on corpus statistics and lexical taxonomy. In: Proceedings of the 1997 ROCLING X, International Conference on Research in Computational Linguistics. Taiwan, China, 1997. 19-33
    [32] Lin D K. An information-theoretic definition of similarity. In: Proceedings of the 15th International Conference Machine Learning. San Francisco, CA: Morgan Kaufmann, 1998. 296-304
    [33] King A D, Przulj N, Jurisica I. Protein complex prediction via cost-based clustering. Bioinformatics, 2004, 20(17): 3013-3020
    [34] Li X L, Foo C S, Ng S K. Discovering protein complexes in dense reliable neighborhoods of protein interaction networks. Computer Society Bioinformatics Conference --CSB, 2007, 6: 157-168
    [35] Hwang W, Cho Y R, Zhang A D, Ramanathan M. CASCADE: a novel quasi all paths-based network analysis algorithm for clustering biological interactions. BMC Bioinformatics, 2008, 9: 64
    [36] Spirin V, Mirny L A. Protein complexes and functional modules in molecular networks. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(21): 12123-12128
    [37] Bader G D, Hogue C W V. An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics, 2003, 4: 2
    [38] Altaf-UI-Adim M, Shinbo Y, Mihara K, Kurokawa K, Kanaya S. Development and implementation of an algorithm for detection of protein complexes in large interaction networks. BMC Bioinformatics, 2006, 7: 207
    [39] Pei P J, Zhang A D. A ''seed-refine'' algorithm for detecting protein complexes from protein interaction data. IEEE Transactions on NanoBioscience, 2007, 6(1): 43-50
    [40] Aldecoa R, Marin I. Jerarca: efficient analysis of complex networks using hierarchical clustering. PLoS ONE, 2010, 5(7): e11585
    [41] Holme P, Huss M, Jeong H. Subnetwork hierarchies of biochemical pathways. Bioinformatics, 2003, 19(4): 532-538
    [42] Dunn R, Dudbridge F, Sanderson C M. The use of edge-betweenness clustering to investigate biological function in protein interaction networks. BMC Bioinformatics, 2005, 6: 39
    [43] Girvan M, Newman M E J. Community structure in social and biological networks. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(12): 7821-7826
    [44] Frey B J, Dueck D. Clustering by passing messages between data points. Science, 2007, 315(5814): 972-976
    [45] Nabieva E, Jim K, Agarwal A, Chazelle B, Singh M. Whole-proteome prediction of protein function via graph-theoretic analysis of interaction maps. Bioinformatics, 2005, 21(S1): i302-i310
    [46] Van Dongen S. A Cluster Algorithm for Graphs. Technical Report INS-R0010, National Research Institute for Mathematics and Computer Science in the Netherlands, 2000
    [47] Hwang W, Cho Y R, Zhang A D, Ramanathan M. A novel functional module detection algorithm for protein-protein interaction networks. Algorithms for Molecular Biology, 2006, 1: 24
    [48] Cho Y R, Hwang W, Zhang A D. Optimizing flow-based modularization by iterative Centroid search in protein interaction networks. In: Proceedings of the 7th IEEE International Conference on Bioinformatics and Bioengineering (BIBM). Boston, MA: IEEE, 2007. 342-349
    [49] Cho Y R, Hwang W, Ramanathan M, Zhang A D. Semantic integration to identify overlapping functional modules in protein interaction networks. BMC Bioinformatics, 2007, 8: 265
    [50] Feng J X, Jiang R, Jiang T. A max-flow based approach to the identification of protein complexes using protein interaction and microarray data. Computer Society Bioinformatics Conference-CSB, 2008, 7: 51-62
    [51] Yang Bo, Liu Da-You, Liu Ji-Ming, Jin Di, Ma Hai-Bin. Complex network clustering algorithms. Journal of Software, 2009, 20(1): 54-66(杨博, 刘大有, Liu Ji-Ming, 金弟, 马海宾. 复杂网络聚类方法. . 软件学报, 2009, 20(1): 54-66)
    [52] Kamp C, Christensen K. Spectral analysis of protein-protein interactions in Drosophila melanogaster. Physical Review, 2005, 71(4): 041911
    [53] Sen T Z, Kloczkowski A, Jernigan R L. Functional clustering of yeast proteins from the protein-protein interaction network. BMC Bioinformatics, 2006, 7: 355
    [54] Qin G M, Gao L. Spectral clustering for detecting protein complexes in protein-protein interaction (PPI) networks. Mathematical and Computer Modelling, 2010, 52(11-12): 2066-2074
    [55] Inoue K, Li W J, Kurata H. Diffusion model based spectral clustering for protein-protein interaction networks. PLoS ONE, 2010, 5(9): e12623
    [56] Gavin A C, Aloy P, Gradi P, Krause R, Boesche M, Marzioch M, Rau C, Jensen L J, Bastuck S, Dümpelfeld B, Edelmann A, Heurtier M A, Hoffman V, Hoefert C, Klein K, Hudak M, Michon A M, Schelder M, Schirle M, Remor M, Rudi T, Hooper S, Bauer A, Bouwmeester T, Casari G, Drewes G, Neubauer G, Rick J M, Kuster B, Bork P, Russell R B, Superti-Furga G. Proteome survey reveals modularity of the yeast cell machinery. Nature, 2006, 440(7084): 631-636
    [57] Leung H C, Yiu S M, Xiang Q, Chin F Y. Predicting protein complexes from PPI data: a core-attachment approach. Journal of Computational Biology, 2009, 16(2): 133-144
    [58] Wu M, Li X L, Kwoh C K, Ng S K. A core-attachment based method to detect protein complexes in PPI networks. BMC Bioinformatics, 2009, 10: 169
    [59] Ma X K, Gao L. Predicting protein complexes in protein interaction networks using a core-attachment algorithm based on graph communicability. Information Sciences, 2012, 189: 233-254
    [60] Sallim J, Abdullah R, Khader A T. ACOPIN: an ACO algorithm with TSP approach for clustering proteins from protein interaction network. In: Proceedings of the 2nd UKSIM European Symposium on Computer Modeling and Simulation. Liverpool: IEEE, 2008. 203-208
    [61] Ji J Z, Liu Z J, Zhang A D, Jiao L, Liu C N. Improved ant colony optimization for detecting functional modules in protein-protein interaction networks. In: Proceedings of the 3rd International Conference on Information Computing and Applications. Berlin, Heidelberg: Springer, 2012. 404413
    [62] Ji J Z, Liu Z J, Zhang A D, Jiao L, Liu C N. Ant colony optimization with multi-agent evolution for detecting functional modules in protein-protein interaction networks. In: Proceedings of the 3rd International Conference on Information Computing and Applications. Berlin, Heidelberg: Springer, 2012. 445-453
    [63] Lei Xiu-Juan, Huang Xu, Wu Shuang, Guo Ling. Joint strength based ant colony optimization clustering algorithm for PPI networks. Acta Electronica Sinica, 2012, 40(4): 695 -702(雷秀娟, 黄旭, 吴爽, 郭玲. 基于连接强度的PPI网络蚁群优化聚类算法. 电子学报, 2012, 40(4): 695-702)
    [64] Pagel P, Kovac S, Oesterheld M, Brauner B, Dunger-Kaltenbach I, Frishman G, Montrone C, Mark P, Stumpflen V, Mewes H W, Ruepp A, Frishman D. The MIPS mammalian protein-protein interaction database. Bioinformatics, 2005, 21(6): 832-834
    [65] Salwinski L, Miller C S, Smith A J, Pettit F K, Bowie J U, Eisenberg D. The database of interacting proteins: 2004 update. Nucleic Acids Research, 2004, 32: D449-D451
    [66] Alfarano C, Andrade C E, Anthony K, Bahroos N, Bajec M, Bantoft K, Betel D, Bobechko B, Boutilier K, Burgess E, Buzadzija K, Cavero R, D'Abreo C, Donaldson I, Dorairajoo D, Dumontier M J, Dumontier M R, Earles V, Farrall R, Feldman H, Garderman E, Gong Y, Gonzaga R, Grytsan V, Gryz E, Gu V, Haldorsen E, Halupa A, Haw R, Hrvojic A, Hurrell L, Isserlin R, Jack F, Juma F, Khan A, Kon T, Konopinsky S, Le V, Lee E, Ling S, Magidin M, Moniakis J, Montojo J, Moore S, Muskat B, Ng I, Paraiso J P, Parker B, Pintilie G, Pirone R, Salama J J, Sgro S, Shan T, Shu Y, Siew J, Skinner D, Snyder K, Stasiuk R, Strumpf D, Tuekam B, Tao S, Wang Z, White M, Willis R, Wolting C, Wong S, Wrong A, Xin C, Yao R, Yates B, Zhang S, Zheng K, Pawson T, Ouellette B F, Hogue C W. The biomolecular interaction network database and related tools 2005 update. Nucleic Acids Research, 2005, 33: D418-D424
    [67] Chatr-Aryamontri A, Breitkreutz B J, Heinicke S, Boucher L, Winter A, Stark C, Nixon J, Ramage L, Kolas N, O'Donnell L, Reguly T, Breitkreutz A, Sellam A, Chen D, Chang C, Rust J, Livstone M, Oughtred R, Dolinski K, Tyers M . The BioGRID interaction database: 2013 update. Nucleic Acids Research, 2013, 41: D816-D823
    [68] Kerrien S, Aranda B, Breuza L, Bridge A, Broackes-Carter F, Chen C, Duesbury M, Dumousseau M, Feuermann M, Hinz U, Jandrasits C, Jimenez RC, Khadake J, Mahadevan U, Masson P, Pedruzzi I, Pfeiffenberger E, Porras P, Raghunath A, Roechert B, Orchard S, Hermjakob H. The IntAct molecular interaction database in 2012. Nucleic Acids Research, 2012, 40: D841-D846
    [69] Keshava Prasad T S, Goel R, Kandasamy K, Keerthikumar S, Kumar S, Mathivanan S, Telikicherla D, Raju R, Shafreen B, Venugopal A, Balakrishnan L, Marimuthu A, Banerjee S, Somanathan DS, Sebastian A, Rani S, Ray S, Harrys Kishore C J, Kanth S, Ahmed M, Kashyap M K, Mohmood R, Ramachandra Y L, Krishna V, Rahiman B A, Mohan S, Ranganathan P, Ramabadran S, Chaerkady R, Pandey A. Human protein reference database-2009 update. Nucleic Acids Research, 2009, 37: D767-D772
    [70] von Mering C, Huynen M, Jaeggi D, Schmidt S, Bork P, Snel B. STRING: a database of predicted functional associations between proteins. Nucleic Acids Research, 2003, 31(1): 258 -261
    [71] Brown K R, Jurisica I. Online predicted human interaction database. Bioinformatics, 2005, 21(9): 2076-2082
    [72] Licata L, Briganti L, Peluso D, Perfetto L, Iannuccelli M, Galeota E, Sacco F, Palma A, Nardozza AP, Santonico E, Castagnoli L, Cesareni G. MINT, the molecular interaction database: 2012 update. Nucleic Acids Research, 2012, 40: D857-D861
    [73] Han K, Park B, Kim H, Hong J S, Park J. HPID: the human protein interaction database. Bioinformatics, 2004, 20(15): 2466-2470
    [74] Sardiu M E, Florens L, Washburn M P. Evaluation of clustering algorithms for protein complex and protein interaction network assembly. Journal of Proteome Research, 2009, 8(6): 2944-2952
    [75] Chua H N, Ning K, Sung W K, Leong H W, Wong L. Using indirect protein-protein interactions for protein complex predication. Computer Society Bioinformatics Conference-CSB, 2007, 6: 97-109
    [76] Friedel C C, Krumsiek J, Zimmer R. Bootstrapping the interactome: unsupervised identification of protein complexes in yeast. In: Proceedings of the 12th Annual International Conference on Research in Computational Molecular Biology. Berlin, Heidelberg: Springer-Verlag, 2008. 3-16
    [77] Brohée S, van Helden J. Evaluation of clustering algorithms for protein-protein interaction networks. BMC Bioinformatics, 2006, 7: 488
    [78] Mewes H W, Amid C, Arnold R, Frishman D, Güldener U, Mannhaupt G, Münsterkotter M, Pagel P, Strack N, Stümpflen V, Warfsmann J, Ruepp A. MIPS: analysis and annotation of proteins from whole genomes. Nucleic Acids Research, 2004, 32(Database issue): D41-D44
    [79] Aloy P, Böttcher B, Ceulemans H, Leutwin C, Mellwig C, Fischer S, Gavin A C, Bork P, Superti-Furga G, Serrano L, Russell R B. Structure-based assembly of protein complexes in yeast. Science, 2004, 303(5666): 2026-2029
    [80] Dwight S S, Harris M A, Dolinski K, Ball C A, Binkley G, Christie K R, Fisk D G, Issel-Tarver L, Schroeder M, Sherlock G, Sethuraman A, Weng S, Botstein D, Cherry J M. Saccharomyces Genome Database (SGD) provides secondary gene annotation using the Gene Ontology (GO). Nucleic Acids Research, 2002, 30(1): 69-72
    [81] Dennis G Jr, Sherman B T, Hosack D A, Yang J, Gao W, Lane H C, Lempicki R A. DAVID: Database for annotation, visualization, and integrated discovery. Genome Biology, 2003, 4(5): P3
    [82] Carbon S, Ireland A, Mungall C J, Shu S Q, Marshall B, Lewis S. AmiGO: online access to ontology and annotation data. Bioinformatics, 2009, 25(2): 288-289
    [83] Zheng Q, Wang X J. GOEAST: a web-based software toolkit for Gene Ontology enrichment analysis. Nucleic Acids Research, 2008, 36(Suppl 2): w358-w363
    [84] Kanehisa M, Goto S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Research, 2000, 28(1): 27-30
    [85] Boyle E I, Weng S, Gollub J, Jin H, Botstein D, Cherry J M, Sherlock G. GO: TermFinder-open source software for accessing Gene Ontology information and finding significantly enriched Gene Ontology terms associated with a list of genes. Bioinformatics, 2004, 20(18): 3710-3715
    [86] Killcoyne S, Carter G W, Smith J, Boyle J. Cytoscape: a community-based framework for network modeling. Methods in Molecular Biology, 2009, 563: 219-239
    [87] Breitkreutz B J, Stark C, Tyers M. Osprey: a network visualization system. Genome Biology, 2003, 4(3): R22
    [88] Guo Xing-Li, Gao Lin, Chen Xin. Models and algorithms for alignment of biological networks. Journal of Software, 2010, 21(9): 2089-2106(郭杏莉, 高琳, 陈新. 生物网络比对的模型与算法. 软件学报, 2010, 21(9): 2089-2106)
    [89] Hirsh E, Sharan R. Identification of conserved protein complexes based on a model of protein network evolution. Bioinformatics, 2006, 23(2): e170-e176
    [90] Dost B, Shlomi T, Gupta N, Ruppin E, Bafna V, Sharan R. QNet: a tool for querying protein interaction networks. In: Proceedings of the 11th Annual International Conference on Research in Computational Molecular Biology. Berlin, Heidelberg: Springer, 2007. 1-15
    [91] Dutkowski J, Tiuryn J. Identification of functional modules from conserved ancestral protein-protein interactions. Bioinformatics, 2007, 23(13): i149-i158
    [92] Liu Zhong-Yang, Li Dong, Zhu Yun-Ping, He Fu-Chu. Progress in the evolutionary analysis of protein interaction networks. Progress in Biochemistry and Biophysics, 2009, 36(1): 13-24(刘中扬, 李栋, 朱云平, 贺福初. 蛋白质相互作用网络进化分析研究进展. 生物化学与生物物理进展, 2009, 36(1): 13-24)
  • 加载中
计量
  • 文章访问数:  2034
  • HTML全文浏览量:  83
  • PDF下载量:  4508
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-01-05
  • 修回日期:  2013-05-07
  • 刊出日期:  2014-04-20

目录

    /

    返回文章
    返回