2.765

2022影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一套完整的基于视觉光流和激光扫描测距的室内无人机导航系统

王飞 崔金强 陈本美 李崇兴

王飞, 崔金强, 陈本美, 李崇兴. 一套完整的基于视觉光流和激光扫描测距的室内无人机导航系统. 自动化学报, 2013, 39(11): 1889-1900. doi: 10.3724/SP.J.1004.2013.01889
引用本文: 王飞, 崔金强, 陈本美, 李崇兴. 一套完整的基于视觉光流和激光扫描测距的室内无人机导航系统. 自动化学报, 2013, 39(11): 1889-1900. doi: 10.3724/SP.J.1004.2013.01889
WANG Fei, CUI Jin-Qiang, CHEN Ben-Mei, LEE Tong H. A Comprehensive UAV Indoor Navigation System Based on Vision Optical Flow and Laser FastSLAM. ACTA AUTOMATICA SINICA, 2013, 39(11): 1889-1900. doi: 10.3724/SP.J.1004.2013.01889
Citation: WANG Fei, CUI Jin-Qiang, CHEN Ben-Mei, LEE Tong H. A Comprehensive UAV Indoor Navigation System Based on Vision Optical Flow and Laser FastSLAM. ACTA AUTOMATICA SINICA, 2013, 39(11): 1889-1900. doi: 10.3724/SP.J.1004.2013.01889

一套完整的基于视觉光流和激光扫描测距的室内无人机导航系统

doi: 10.3724/SP.J.1004.2013.01889

A Comprehensive UAV Indoor Navigation System Based on Vision Optical Flow and Laser FastSLAM

More Information
    Corresponding author: CHEN Ben-Mei
  • 摘要: 提出了一套室内四旋翼无人机控制, 导航, 定位和地图构建的完整解决方案. 无人机机载系统包括三个主要传感器, 即惯性测量单元, 下视相机和激光扫描测距仪. 经过处理, 融合这些传感器的测量数据, 无人机能够可靠的估计自己的飞行速度和实时位置, 并且沿着室内的墙壁进行无碰撞飞行. 通过收集一个完整飞行实验的数据, 无人机的飞行路径和在室内的环境也可以被很好地估计出来. 这套系统中的自主导功能不需要任何远程传感信息或脱机计算能力. 这套室内导航方案的性能和可靠性已在实际的飞行实验中被验证.
  • [1] Huang Lin, Duan Zhi-Sheng, Yang Ying. Several problems on control of modern aerocraft. Science and Technology Review, 2008, 26(20): 92-98 (黄琳, 段志生, 杨莹. 现代飞行器控制的几个科学问题. 科技导报, 2008, 26(20): 92-98)
    [2] Cui Er-Jie. Research statutes, development trends and key technical problems of near space flying vehicles. Advances in Mechanics, 2009, 39(6): 658-673 (崔尔杰. 近空间飞行器研究发展现状及关键技术问题. 力学进展, 2009, 39(6): 658-673)
    [3] Clark A, Wu C, Mirmirani M, Choi S B. Development of an airframe-propulsion integrated hypersonic vehicle model. In: Proceedings of the 44th AIAA Aerospace Sciences Meeting and Exhibit. Reno, Nevada: American Institute of Aeronautics and Astronautics, 2006. AIAA 2006-218
    [4] Zhang Jing-Nan, Sun Wei-Meng, Zheng Zhi-Qiang. Discussion of control technique of hypersonic weapon. Aero Weaponry, 2006, (4): 11-13 (张静男, 孙未蒙, 郑志强. 高超声速武器控制技术发展探讨. 航空兵器, 2006, (4): 11-13)
    [5] Fidan B, Mirmirani M, Ioannou P A. Flight dynamics and control of air-breathing hypersonic vehicles: review and new directions. In: Proceedings of the 12th AIAA International Space Planes and Hypersonic Systems and Technologies. Norfolk, Virginia: American Institute of Aeronautics and Astronautics, 2003. AIAA 2003-7081
    [6] Yong En-Mi, Tang Guo-Jin, Chen Lei. Rapid trajectory planning for hypersonic unpowered long-range reentry vehicles with multi-constraints. Journal of Astronautics, 2008, 29(1): 46-52 (雍恩米, 唐国金, 陈磊. 高超声速无动力远程滑翔飞行器多约束条件下的轨迹快速生成. 宇航学报, 2008, 29(1): 46-52)
    [7] Wei Jian-Li, Yu Yun-Feng, Yan Jie. Research on robust control of hypersonic vehicle. Journal of Astronautics, 2008, 29(5): 1526-1530 (尉建利, 于云峰, 闫杰. 高超声速飞行器鲁棒控制方法研究. 宇航学报, 2008, 29(5): 1526-1530)
    [8] Bolender M A, Doman D B. Nonlinear longitudinal dynamical model of an air-breathing hypersonic vehicle. Journal of Spacecraft and Rockets, 2007, 44(2): 374-387
    [9] Shaughnessy J D, Pinckney S Z, McMinn J D, Cruz C I, Kelley M L. Hypersonic Vehicle Simulation Model: Winged-Cone Configuration. NASA Technical Memorandum 102610, NASA Langley Research Center, USA, 1990
    [10] Heller M, Sachs G, Gunnarsson K S, Frank H, Rylander D. Flight dynamics and robust control of a hypersonic test vehicle with ramjet propulsion. In: Proceedings of the 8th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 1998. AIAA 1998-1521
    [11] Keshmiri S, Colgren R, Mirmirani M. Development of an aerodynamic database for a generic hypersonic air vehicle. In: Proceedings of the 2005 AIAA Guidance, Navigation, and Control Conference and Exhibit. San Francisco, California: American Institute of Aeronautics and Astronautics, 2005. AIAA 2005-6257
    [12] Colgren R, Keshmiri S, Mirmirani M. Nonlinear ten-degree-of-freedom dynamics model of a generic hypersonic vehicle. Journal of Aircraft, 2009, 46(3): 800-813
    [13] Lee J. Modeling and Controller Design for Hypersonic Vehicles [Ph.D. dissertation], University of Kansas, USA, 2006
    [14] Huo Y, Mirmirani M, Ioannou P, Kuipers M. Altitude and velocity tracking control for an airbreathing hypersonic cruise vehicle. In: Proceedings of the 2006 AIAA Guidance, Navigation, and Control Conference and Exhibit. Keystone, Colorado: American Institute of Aeronautics and Astronautics, 2006. AIAA 2006-6695
    [15] Kuipers M, Mirmirani M, Ioannou P, Huo Y. Adaptive control of an aeroelastic airbreathing hypersonic cruise vehicle. In: Proceedings of the 2007 AIAA Guidance, Navigation and Control Conference and EXhibit. Hilton Head, South California: American Institute of Aeronautics and Astronautics, 2007. AIAA 2007-6326
    [16] Kuipers M, Ioannou P, Fidan B. Robust adaptive multiple model controller design for an airbreathing hypersonic vehicle model. In: Proceedings of the 2008 AIAA Guidance, Navigation and Control Conference and Exhibit. Honolulu, Hawaii: American Institute of Aeronautics and Astronautics, 2008. AIAA 2008-7142
    [17] Chavez F R, Schmidt D K. Analytical aeropropulsive-aeroelastic hypersonic-vehicle model with dynamic analysis. Journal of Guidance, Control, and Dynamics, 1994, 17(6): 1308-1319
    [18] Williams T, Bolender M A, Doman D B, Morataya O. An aerothermal flexible mode analysis of a hypersonic vehicle. In: Proceedings of the 2006 AIAA Atmospheric Flight Mechanics Conference and Exhibit. Keystone, Colorado: American Institute of Aeronautics and Astronautics, 2006. AIAA 2006-6647
    [19] Parker J T, Serrani A, Yurkovich S, Bolender M A, Doman D B. Control-oriented modeling of an air-breathing hypersonic vehicle. Journal of Guidance, Control, and Dynamics, 2007, 30(3): 856-869
    [20] Yao Z H, Bao W, Chang J, Yu D, Tang J. Modelling for couplings of an airframe-propulsion integrated hypersonic vehicle with engine safety boundaries. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2010, 224(1): 43-55
    [21] Keshmiri S, Colgren R, Mirmirani M. Six-DOF modeling and simulation of a generic hypersonic vehicle for control and navigation purposes. In: Proceedings of the 2006 AIAA Guidance, Navigation, and Control Conference and Exhibit. Keystone, Colorado: American Institute of Aeronautics and Astronautics, 2006. AIAA 2006-6694
    [22] Zhang Jun, Jiang Chang-Sheng, Fang Wei. Variable structure near space vehicle control characteristics of large flight envelope. Journal of Astronautics, 2009, 30(2): 543-549 (张军, 姜长生, 方炜. 变结构近空间飞行器大飞行包络控制特性研究. 宇航学报, 2009, 30(2): 543-549)
    [23] Qian Cheng-Shan. Robust Control for Aerospace Vehicles Based on Multi-model [Ph.D. dissertation], Nanjing University of Aeronautics and Astronautics, China, 2008 (钱承山. 空天飞行器多模型鲁棒控制研究 [博士学位论文], 南京航空航天大学, 中国, 2008)
    [24] Brockhaus R. Flight Control. Beijing: National Defence Industry Press, 1999 (布罗克豪斯. 飞行控制. 北京: 国防工业出版社, 1999)
    [25] Guo Suo-Feng, Shen Gong-Zhang, Wu Cheng-Fu. Advanced Flight Control System. Beijing: National Defence Industry Press, 2003 (郭锁凤, 申功璋, 吴成福. 先进飞行控制系统. 北京: 国防工业出版社, 2003)
    [26] Marrison C I, Stengel R F. Design of robust control systems for a hypersonic aircraft. Journal of Guidance, Control, and Dynamics, 1998, 21(1): 58-63
    [27] Naidu S D, Banda S S, Bufington J L. Unified approach to H2 and H_{∞ optimal control of a hypersonic vehicle. In: Proceedings of the 1999 American Control Conference. San Diego, California: IEEE, 1999. 2737-2741
    [28] Gao H J, Si Y L, Li H Y, Hu X X, Wang C H. Modeling and control of an air-breathing hypersonic vehicle. In: Proceedings of the 7th Asian Control Conference. Hong Kong, China: IEEE, 2009. 304-307
    [29] Lei Y, Cao C Y, Cliff E, Hovakimyan N, Kurdila A, Wise K. L1 adaptive controller for air-breathing hypersonic vehicle with flexible body dynamics. In: Proceedings of the 2009 American Control Conference. Saint Louis, Missouri: IEEE, 2009. 3166-3171
    [30] Sigthorsson D O, Jankovsky P, Serrani A, Yurkovich S, Bolender M A, Doman D B. Robust linear output feedback control of an airbreathing hypersonic vehicle. Journal of Guidance, Control, and Dynamics, 2008, 31(4): 1052-1065
    [31] Ochi Y. Design of a flight controller for hypersonic flight experiment vehicle. Asian Journal of Control, 2004, 6(3): 353-361
    [32] Mooij E. Numerical investigation of model reference adaptive control for hypersonic aircraft. Journal of Guidance, Control, and Dynamics, 2001, 24(2): 315-323
    [33] Gibson T E, Crespo L G, Annaswamy A M. Adaptive control of hypersonic vehicles in the presence of modeling uncertainties. In: Proceedings of the 2009 American Control Conference. Saint Louis, Missouri: IEEE, 2009. 3178-3183
    [34] Gunnarsson K S, Jacobsen J O. Design and simulation of a parameter varying controller for a fighter aircraft. In: Proceedings of the 2001 AIAA Guidance, Navigation, and Control Conference and Exhibit. Montreal, Canada: American Institute of Aeronautics and Astronautics, 2001. AIAA 2001-4105
    [35] Wang Q, Stengel R F. Robust nonlinear control of a hypersonic aircraft. Journal of Guidance, Control, and Dynamics, 2000, 23(4): 577-585
    [36] Fiorentini L, Serrani A, Bolender M A, Doman D B. Nonlinear robust adaptive control of flexible air-breathing hypersonic vehicles. Journal of Guidance, Control and Dynamics, 2009, 32(2): 402-417
    [37] Serrani A, Zinnecker A M, Fiorentini L, Bolender M A, Doman D B. Integrated adaptive guidance and control of constrained nonlinear air-breathing hypersonic vehicle models. In: Proceedings of the 2009 American Control Conference. Saint Louis, Missouri: IEEE, 2009. 3172-3177
    [38] Xu H J, Mirmirani M, Ioannou P. Adaptive sliding mode control design for a hypersonic flight vehicle. Journal of Guidance, Control, and Dynamics, 2004, 27(5): 829-838
    [39] Rehman O U, Fidan B, Petersen I. Minimax LQR control design for a hypersonic flight vehicle. In: Proceedings of the 16th AIAA/DLR/DGLR International Space Planes and Hypersonic Systems and Technologies Conference. Bremen, Germany: American Institute of Aeronautics and Astronautics, 2009. AIAA 2009-7291
    [40] Mu C X, Sun C Y, Yu X H. Observation and control for air-breathing hypersonic aircrafts based on sliding mode method. In: Proceedings of the 37th Annual Conference of the IEEE Industrial Electronics Society. Melbourne, Australia: IEEE, 2011. 3965-3970
    [41] Huang Y Q, Sun C Y, Qian C S, Wang L. Non-fragile switching tracking control for a flexible air-breathing hypersonic vehicle based on polytopic LPV model. Chinese Journal of Aeronautics, 2013, 26(4): 948-959
    [42] Huang Y Q, Sun C Y, Qian C S, Zhang J M, Wang L. Polytopic LPV modeling and gain-scheduled switching control for a flexible air-breathing hypersonic vehicle. Journal of Systems Engineering and Electronics, 2013, 24(1): 118-127
    [43] Sigthorsson D, Serrani A, Bolender M A, David D B. LPV control design for over-actuated hypersonic vehicles models. In: Proceedings of the 2009 AIAA Guidance, Navigation, and Control Conference and Exhibit. Lllinois, Chicago: American Institute of Aeronautics and Astronautics, 2009. AIAA 2009-6280
    [44] Gao Dao-Xiang, Sun Zeng-Qi, Luo Xiong, Du Tian-Rong. Fuzzy adaptive control for hypersonic vehicle via backstepping method. Control Theory and Applications, 2008, 25(5): 805-810 (高道祥, 孙增圻, 罗熊, 杜天容. 基于Backstepping的高超声速飞行器模糊自适应控制. 控制理论与应用, 2008, 25(5): 805-810)
    [45] Gao Dao-Xiang, Sun Zeng-Qi, Du Tian-Rong. Discrete-time controller design for hypersonic vehicle via back-stepping. Control and Decision, 2009, 24(3): 459-463, 467 (高道祥, 孙增圻, 杜天容. 高超声速飞行器基于Back-stepping的离散控制器设计. 控制与决策, 2009, 24(3): 459-463, 467)
    [46] Liu Yan-Bin, Lu Yu-Ping. Longitudinal inversion flight control based on backstepping for hypersonic vehicle. Control and Decision, 2007, 22(3): 313-317 (刘燕斌, 陆宇平. 基于反步法的高超音速飞机纵向逆飞行控制. 控制与决策, 2007, 22(3): 313-317)
    [47] Zong Q, Ji Y H, Zeng F L, Liu H L. Output feedback back-stepping control for a generic hypersonic vehicle via small-gain theorem. Aerospace Science and Technology, 2012, 23: 409-417
    [48] Zhou Z, Lin C F. Fuzzy logic based flight control system for hypersonic transporter. In: Proceedings of the 36th IEEE Conference on Decision and Control. San Diego, California: IEEE, 1997. 2730-2735
    [49] Xu H J, Mirmirani M, Ioannou P. Robust neural adaptive control of a hypersonic aircraft. In: Proceedings of the 2003 AIAA Guidance, Navigation, and Control Conference and Exhibit. Austin, Texas: American Institute of Aeronautics and Astronautics, 2003. AIAA 2003-5641
    [50] Meng B, Wu H X. Adaptive control based on characteristic model for a hypersonic flight vehicle. In: Proceedings of the 26th Chinese Control Conference. Zhangjiajie, Hunan: IEEE, 2007. 720-724
    [51] Adami T A, Zhu J, Bolender M A, Doman D B, Oppenheimer M. Flight control of hypersonic scramjet vehicles using a differential algebraic approach. In: Proceedings of the 2006 AIAA Guidance, Navigation, and Control Conference and Exhibit. Keystone, Colorado: American Institute of Aeronautics and Astronautics, 2006. AIAA 2006-6559
    [52] Adami T A, Zhu J. Control of a flexible, hypersonic scramjet vehicle using a differential algebraic approach. In: Proceedings of the 2008 AIAA Guidance, Navigation and Control Conference and Exhibit. Honolulu, Hawaii: American Institute of Aeronautics and Astronautics, 2008. AIAA 2008-7464
    [53] Mu Chao-Xu, Yu Xing-Huo, Sun Chang-Yin. Phase trajectory and transient analysis for nonsingular terminal sliding mode control systems. Acta Automatica Sinica, 2013, 39(6): 902-908 (穆朝絮, 余星火, 孙长银. 非奇异终端滑模控制系统相轨迹和暂态分析. 自动化学报, 2013, 39(6): 902-908)
    [54] Zhou Ying-Jiang, Wang Li, Sun Chang-Yin. Global asymptotic and finite-time stability for nonlinear systems. Acta Automatica Sinica, 2013, 39(5): 664-672 (周映江, 王莉, 孙长银. 一类非线性系统的全局渐近稳定和有限时间镇定. 自动化学报, 2013, 39(5): 664-672)
    [55] Zhang R M, Sun C Y, Zhang J M, Zhou Y J. Second-order terminal sliding mode control for hypersonic vehicle in cruising flight with sliding mode disturbance observer. Journal of Control Theory and Applications, 2013, 11(2): 299-305
    [56] Sun H B, Li S H, Sun C Y. Finite time integral sliding mode control of hypersonic vehicles. Nonlinear Dynamics, 2013, 73(1-2): 229-244
    [57] Sun H B, Li S H, Sun C Y. Robust adaptive integral-sliding-mode fault-tolerant control for airbreathing hypersonic vehicles. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 2012, 226(10): 1344-1355
    [58] Li S H, Sun H B, Sun C Y. Composite controller design for an airbreathing hypersonic vehicle. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 2012, 226(5): 651-664
    [59] Yang J, Li S H, Sun C Y, Guo L. Nonlinear-disturbance-observer-based robust flight control for airbreathing hypersonic vehicles. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(2): 1263-1275
    [60] Groves K P, Serrani A, Yurkovich S, Bolender M A, Doman D B. Anti-windup control for an air-breathing hypersonic vehicle model. In: Proceedings of the 2006 AIAA Guidance, Navigation, and Control Conference and Exhibit. Keystone, Colorado: American Institute of Aeronautics and Astronautics, 2006. AIAA 2006-6557
    [61] Vaddi S S, Sengupta P. Controller design for hypersonic vehicles accommodating nonlinear state and control constraints. In: Proceedings of the 2009 AIAA Guidance, Navigation, and Control Conference and Exhibit. Lllinois, Chicago: American Institute of Aeronautics and Astronautics, 2009. AIAA 2009-6286
    [62] Li Hui-Feng. Guidance and Control Technology of Hypersonic Aircrafts. Beijing: China Astronautic Publishing House, 2012 (李惠峰. 高超声速飞行器制导与控制技术. 北京: 中国宇航出版社, 2012)
    [63] Sun H B, Li S H, Sun C Y. Non-fragile adaptive fault-tolerant controller design for an airbreathing hypersonic vehicle. In: Proceedings of the 31st Chinese Control Conference. Hefei, China: IEEE, 2012. 453-458
    [64] Sun H B, Li S H, Sun C Y. Adaptive fault-tolerant controller design for airbreathing hypersonic vehicle with input saturation. Journal of Systems Engineering and Electronics, 2013, 24(3): 488-499
    [65] Fiorentini L, Serrani A, Bolender M A, Doman D B. Nonlinear robust/adaptive controller design for an air-breathing hypersonic vehicle model. In: Proceedings of the 2007 AIAA Guidance, Navigation and Control Conference and Exhibit. Hilton Head, South California: American Institute of Aeronautics and Astronautics, 2007. AIAA 2007-6329
    [66] Sun C Y, Huang Y Q, Qian C S, Wang L. On modeling and control of a flexible air-breathing hypersonic vehicle based on LPV method. Frontiers of Electrical and Electronic Engineering, 2012, 7(1): 56-68
    [67] Bolender M A, Doman D B. Flight path angle dynamics of air-breathing hypersonic vehicles. In: Proceedings of the 2006 AIAA Guidance, Navigation, and Control Conference and Exhibit. Keystone, Colorado: American Institute of Aeronautics and Astronautics, 2006. AIAA 2006-6692
    [68] Oppenheimer M W, Doman D B. Control of an unstable, nonminimum phase hypersonic vehicle model. In: Proceedings of the 2006 IEEE Aerospace Conference, Big Sky, Montana: IEEE, 2006. 1-7
    [69] Fiorentini L, Serrani A, Bolender M A, Doman D B. Nonlinear control of non-minimum phase hypersonic vehicle models. In: Proceedings of the 2009 American Control Conference. Saint Louis, Missouri: IEEE, 2009. 3160-3165
    [70] Yang Jun-Chun, Ni Mao-Lin. Design of guidance law for reentry vehicles based on the solution of Riccati equation. Aerospace Control, 2006, 24(4): 31-34 (杨俊春, 倪茂林. 基于Riccati方程解的再入飞行器制导律设计. 航天控制, 2006, 24(4): 31-34)
    [71] Carson J M III, Epstein M S, MacMynowski D G, Murray R M. Optimal nonlinear guidance with inner-loop feedback for hypersonic re-entry. In: Proceedings of the 2006 American Control Conference. Minneapolis, Minnesota: IEEE, 2006. 5782-5787
    [72] Zhang J, Xiao Y Z, Bi Z F. Guidance method based on multi-model prediction for re-entry vehicles. Acta Aeronautica Et Astronautica Sinica, 2008, 29(Suppl): S20-S25
    [73] Li Hui-Feng, Xie Ling. Reentry guidance law design for RLV based on predictor-corrector method. Journal of Beijing University of Aeronautics and Astronautics, 2009, 35(11): 1344-1348 (李惠峰, 谢陵. 基于预测校正方法的RLV再入制导律设计. 北京航空航天大学学报, 2009, 35(11): 1344-1348)
    [74] Lu P. Predictor-corrector entry guidance for low-lifting vehicles. Journal of Guidance, Control, and Dynamics, 2008, 31(4): 1067-1075
    [75] Xue S B, Lu P. Constrained predictor-corrector entry guidance. Journal of Guidance, Control, and Dynamics, 2010, 33(4): 1273-1281
    [76] Hu Jian-Xue, Chen Ke-Jun, Zhao Han-Yuan, Yu Meng-Lun. Hybrid entry guidance for reusable launch vehicles. Journal of Astronautics, 2007, 28(1): 213-217 (胡建学, 陈克俊, 赵汉元, 余梦伦. RLV再入混合制导方法研究. 宇航学报, 2007, 28(1): 213-217)
    [77] Wang Jun-Bo, Tian Yuan, Ren Zhang. Mixed guidance method for reentry vehicles based on optimization. Journal of Beijing University of Aeronautics and Astronautics, 2010, 36(6): 736-740 (王俊波, 田源, 任章. 基于最优化问题的混合再入制导方法. 北京航空航天大学学报, 2010, 36(6): 736-740)
    [78] Chen Gang, Kang Xing-Wu, Yan Gui-Rong, Chen Shi-Lu. Real time robust adaptive reentry guidance law based on pseudo-spectral method. Journal of System Simulation, 2008, 20(20): 5623-5626, 5634 (陈刚, 康兴无, 闫桂荣, 陈士橹. 基于伪谱方法的自适应鲁棒实时再入制导律研究. 系统仿真学报, 2008, 20(20): 5623-5626, 5634)
    [79] Tian B L, Zong Q. Optimal guidance for reentry vehicles based on indirect Legendre pseudospectral method. Acta Astronautica, 2011, 68(7-8): 1176-1184
    [80] Hu Jian-Xue, Chen Ke-Jun, Zhao Han-Yuan, Yu Meng-Lun. Comparisons between reference-trajectory and predictor-corrector entry guidances for RLVs. Journal of National University of Defense Technology, 2007, 29(1): 26-29, 34 (胡建学, 陈克俊, 赵汉元, 余梦伦. RLV再入标准轨道制导与轨道预测制导方法比较分析. 国防科技大学学报, 2007, 29(1): 26-29, 34)
    [81] Calhoun P C, Queen E M. Entry vehicle control system design for the mars science laboratory. Journal of Spacecraft and Rockets, 2006, 43(2): 324-329
    [82] Burken J J, Lu P, Wu Z L, Bahm C. Two reconfigurable flight-control design methods: robust servomechanism and control allocation. Journal of Guidance, Control, and Dynamics, 2001, 24(3): 482-493
    [83] He Cheng-Long, Chen Xin, Yang Yi-Dong. Mixed programming control allocation for reusable launch vehicles using dynamic inverse calculating. Systems Engineering and Electronics, 2010, 32(9): 1973-1976, 2008(贺成龙, 陈欣, 杨一栋. 一种动态逆解算的RLV混合规划控制分配研究. 系统工程与电子技术, 2010, 32(9): 1973-1976, 2008)
    [84] Hall C, Hodel A S, Hung J Y. Variable-structure PID control to prevent integrator windup. IEEE Transactions on Industrial Electronics, 2001, 48(2): 442-451
    [85] Johnson E N. Limited Authority Adaptive Flight Control. Atlanta: Georgia Institute of Technology, 2000
    [86] Lian B H, Hurtado J E. Adaptive backstepping control based autopilot design for reentry vehicle. In: Proceedings of the 2004 AIAA Guidance, Navigation, and Control Conference and Exhibit. Providence, Rhode Island: American Institute of Aeronautics and Astronautics, 2004. AIAA 2004-5328
    [87] Shtessel Y, Krupp D. Reusable launch vehicle trajectory control in sliding modes. In: Proceedings of the 1997 American Control Conference. Albuquerque, New Mexico: IEEE, 1997. 2557-2561
    [88] Shtessel Y, McDuffie J, Jackson M, Hall C, Gallaher M, Krupp D, et al. Sliding mode control of the X-33 vehicle in launch and re-entry modes. In: Proceedings of the 1998 AIAA Guidance, Navigation, and Control Conference and Exhibit. Boston, Massachusetts: American Institute of Aeronautics and Astronautics, 1998. AIAA 1998-4414
    [89] Shtessel Y, Hall C, Jackson M. Reusable launch vehicle control in multiple-time-scale sliding modes. Journal of Guidance, Control, and Dynamics, 2000, 23(6): 1013-1020
    [90] Shtessel Y, Hall C. Multiple time scale sliding mode control of reusable launch vehicles in ascent and descent modes. In: Proceedings of the 2001 American control conference. Arlington, Viraginia: IEEE, 2001. 4357-4362
    [91] Shtessel Y, Zhu J, Daniels D. Reusable launch vehicle attitude control using a time-varying sliding mode control technique. In: Proceedings of the 34th Southeastern Symposium on System Theory. Savannah, Georgia: IEEE, 2002. 81-85
    [92] Hall C, Shtessel Y. Sliding mode disturbance observer-based control for a reusable launch vehicle. In: Proceedings of the 2005 AIAA Guidance, Navigation, and Control Conference and Exhibit. San Francisco, California: American Institute of Aeronautics and Astronautics, 2005. AIAA 2005-6145
    [93] Hall C, Shtessel Y. Sliding mode disturbance observer-based control for a reusable launch vehicle. Journal of Guidance, Control, and Dynamics, 2006, 29(6): 1315-1328
    [94] Shtessel Y, Strott J, Zhu J. Time-varying sliding mode control with sliding mode observer for reusable launch vehicle. In: Proceedings of the 2003 AIAA Guidance, Navigation, and Control Conference and Exhibit. Austin, Texas: American Institute of Aeronautics and Astronautics, 2003. AIAA 2003-5362
    [95] Ning Guo-Dong, Zhang Shu-Guang, Fang Zhen-Ping. Entry control using sliding modes and state observer synthesis for reusable launch vehicle. Journal of Astronautics, 2007, 28(1): 69-76 (宁国栋, 张曙光, 方振平. 可重复使用航天器基于状态估计的再入飞行滑模控制器设计研究. 宇航学报, 2007, 28(1): 69-76)
    [96] Li Ke-Feng Tian Yuan, Ren Zhang. Advanced control method research for lift reentry flight. Aerospace Shanghai, 2006, 23(4): 27-29, 33 (黎科峰, 田源, 任章. 升力式再入飞行器的先进控制方法研究. 上海航天, 2006, 23(4): 27-29, 33)
    [97] Ji Peng-Fei, Zhou Jun. Variable structure attitude control algorithm of reentry vehicle. Computer Simulation, 2010, 27(4): 53-56 (及鹏飞, 周军. 再入飞行器变结构姿态控制律设计与仿真. 计算机仿真, 2010, 27(4): 53-56)
    [98] Zhu J, Banker B, Hall C. X-33 ascent flight control design by trajectory linearization---a singular perturbation approach. In: Proceedings of the 2000 AIAA Guidance, Navigation and Control Conference and Exhibit. Denver, Colorado: American Institute of Aeronautics and Astronautics, 2000. AIAA 2000-4159
    [99] Bevacqua T, Best E, Huizenga A, Cooper D, Zhu J. Improved trajectory linearization flight controller for reusable launch vehicles. In: Proceedings of the 42nd AIAA Aerospace Sciences Meeting and Exhibit. Reno, Nevada: American Institute of Aeronautics and Astronautics, 2004. AIAA 2004-875
    [100] Zhang Chun-Yu, Jiang Chang-Sheng, Zhu Liang. Trajectory linearization control for an aerospace vehicle based on fuzzy disturbance observer. Journal of Astronautics, 2007, 28(1): 33-38 (张春雨, 姜长生, 朱亮. 基于模糊干扰观测器的空天飞行器轨迹线性化控制. 宇航学报, 2007, 28(1): 33-38)
    [101] Zhu L, Jiang C S, Zhang C Y. Adaptive trajectory linearization control for aerospace vehicle based on rbfnn disturbance observer. Acta Aeronautica Et Astronautica Sinica, 2008, 28(3): 673-677
    [102] Zhu Liang, Jiang Chang-Sheng, Xue Ya-Li. Robust adaptive trajectory linearization control for aerospace vehicle using single hidden layer neural networks. Acta Armamentarii, 2008, 29(1): 52-56 (朱亮, 姜长生, 薛雅莉. 基于单隐层神经网络的空天飞行器鲁棒自适应轨迹线性化控制. 兵工学报, 2008, 29(1): 52-56)
    [103] Zhu Liang. Robust Adaptive Control for Uncertain Nonlinear Systems and Its Applications to Aerospace Vehicles [Ph.D. dissertation], Nanjing University of Aeronautics and Astronautics, China, 2006 (朱亮. 空天飞行器不确定非线性鲁棒自适应控制 [博士学位论文], 南京航空航天大学, 中国, 2006)
    [104] Yan Dai-Wei, Gu Liang-Xian, Guan Qian-Shan, Sun Ping. Combat effectiveness modeling and evaluation of hypersonic cruise missiles. Acta Armamentarii, 2007, 28(6): 725-729 (阎代维, 谷良贤, 管千山, 孙平. 高超声速巡航导弹作战效能建模与评估. 兵工学报, 2007, 28(6): 725-729)
    [105] Gu Feng, He Yu-Qing, Han Jian-Da, Wang Yue-Chao. An active cooperative observation method for multi-robots in three dimensional environments. Acta Automatica Sinica, 2010, 36(10): 1443-1453 (谷丰, 何玉庆, 韩建达, 王越超. 三维环境中多机器人动态目标主动协作观测方法. 自动化学报, 2010, 36(10): 1443-1453)
    [106] Wang Lin, Wang Nan, Zhu Hua-Yong, Shen Lin-Cheng. Distributed fusion estimation algorithm for multi-UAVs cooperative sensing. Control and Decision, 2010, 25(6): 814-820 (王林, 王楠, 朱华勇, 沈林成. 一种面向多无人机协同感知的分布式融合估计方法. 控制与决策, 2010, 25(6): 814-820)
    [107] Xiao Song, Tan Xian-Si, Wang Hong, Li Zhi-Huai. Research on the detection system of near-space hypersonic vehicle. Winged Missiles Journal, 2012, (6): 28-31 (肖松, 谭贤四, 王红, 李志淮. 国外临近空间高超声速飞行器探测系统研究. 飞航导弹, 2012, (6): 28-31)
    [108] Li Chang-Xi, Bi Hong-Kui, Wang Hong, Zhang Bing. A target tracking algorithm for hypersonic aircraft in near space. Aerospace Electronic Warfare, 2012, (4): 10-13 (李昌玺, 毕红葵, 王红, 张兵. 一种临近空间高超声速目标跟踪算法. 航天电子对抗, 2012, (4): 10-13)
    [109] Wang Jian-Qing, Li Fan, Zhao Jian-Hui, Wan Cong-Mei. Summary of guidance law based on cooperative attack of multi-missile method. Flight Dynamics, 2011, 29(4): 6-10 (王建青, 李帆, 赵建辉, 万聪梅. 多导弹协同制导律综述. 飞行力学, 2011, 29(4): 6-10)
    [110] Zhao S Y, Zhou R. Multi-missile cooperative guidance using coordination variables. Acta Aeronautica et Astronautica Sinica, 2008, 29(6): 1605-1611
    [111] Peng Chen, Liu Xing, Wu Sen-Tang, Li Meng. Consensus problems in distributed cooperative terminal guidance time of multi-missiles. Control and Decision, 2010, 25(10): 1557-1561, 1566 (彭琛, 刘星, 吴森堂, 李甍. 多弹分布式协同末制导时间一致性研究. 控制与决策. 2010, 25(10): 1557-1561, 1566)
    [112] Harl N, Balakrishnan S N. Impact time and angle guidance with sliding mode control. IEEE Transactions on Control Systems Technology, 2012, 20(6): 1436-1449
    [113] Fan Z E, Shi X J, Pan C P, Gu W J. A finite-time convergent variable structure guidance law with impact angle constraint. Intelligence Computation and Evolutionary Computation, Advances in Intelligent Systems and Computing. Berlin Heidelberg: Springer-Verlag, 2013, 180: 513-519
    [114] Oh S, Schenato L, Chen P, Sastry S. Tracking and coordination of multiple agents using sensor networks: system design, algorithms and experiments. Proceedings of the IEEE, 2007, 95(1): 234-254
    [115] Olfati-Saber R, Jalalkamali P. Collaborative target tracking using distributed Kalman filtering on mobile sensor networks. In: Proceedings of the 2011 American Control Conference. San Francisco, California: IEEE, 2011. 1100-1105
    [116] Wang X L, Hong Y G, Jiang Z P. Coverage tracking of a moving target by a group of mobile agents. In: Proceedings of the 7th Asian Control Conference. Hong Kong, China: IEEE, 2009. 332-337
  • 加载中
计量
  • 文章访问数:  2771
  • HTML全文浏览量:  139
  • PDF下载量:  2483
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-07-10
  • 修回日期:  2013-08-29
  • 刊出日期:  2013-11-20

目录

    /

    返回文章
    返回