2.765

2022影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种改进的SR-CDKF算法及其在早期微小故障检测中的应用

陈业 胡昌华 周志杰 张伟 王华国

陈业, 胡昌华, 周志杰, 张伟, 王华国. 一种改进的SR-CDKF算法及其在早期微小故障检测中的应用. 自动化学报, 2013, 39(10): 1703-1713. doi: 10.3724/SP.J.1004.2013.01703
引用本文: 陈业, 胡昌华, 周志杰, 张伟, 王华国. 一种改进的SR-CDKF算法及其在早期微小故障检测中的应用. 自动化学报, 2013, 39(10): 1703-1713. doi: 10.3724/SP.J.1004.2013.01703
CHEN Ye, HU Chang-Hua, ZHOU Zhi-Jie, ZHANG Wei, WANG Hua-Guo. Method of Improving Square-root Center Difference Kalman Filter with Application to Incipient Failure Detection. ACTA AUTOMATICA SINICA, 2013, 39(10): 1703-1713. doi: 10.3724/SP.J.1004.2013.01703
Citation: CHEN Ye, HU Chang-Hua, ZHOU Zhi-Jie, ZHANG Wei, WANG Hua-Guo. Method of Improving Square-root Center Difference Kalman Filter with Application to Incipient Failure Detection. ACTA AUTOMATICA SINICA, 2013, 39(10): 1703-1713. doi: 10.3724/SP.J.1004.2013.01703

一种改进的SR-CDKF算法及其在早期微小故障检测中的应用

doi: 10.3724/SP.J.1004.2013.01703
基金项目: 

国家杰出青年科学基金(61025014), 国家自然科学基金(61004069), 陕西省自然科学基金(2011JQ8007)资助

详细信息
    作者简介:

    胡昌华 博士,第二炮兵工程大学教授.主要研究方向为控制理论与应用,故障预报、诊断与可靠性工程.E-mail:hch6603@263.net

Method of Improving Square-root Center Difference Kalman Filter with Application to Incipient Failure Detection

Funds: 

Supported by National Science Fund for Distinguished Youth Scholars of China (61025014), National Natural Science Foundation of China (61004069), and the Natural Science Foundation of Shaanxi Province (2011JQ8007)

  • 摘要: 复杂设备早期微小故障检测是故障检测与诊断领域的难题,系统状态和参数发生阶跃变化或者缓慢漂移是这类故障的主要特征. 本文在正交性原理的基础上,提出一种强跟踪平方根中心差分卡尔曼滤波(Square-root center difference Kalman filter, SR-CDKF), 即SSR-CDKF,并将SSR-CDKF应用于复杂设备的早期微小故障检测中. 仿真结果表明, SSR-CDKF能够更准确地估计系统状态和参数,更迅速地跟踪系统和参数突变情况. 通过仿真计算比较滤波器在不同参数取值下的方差值,得出了选择合适参数的方法. 最后利用该算法检测出了陀螺仪的早期微小故障.
  • [1] Zhang Q H, Basseville M, Benveniste A. Early warning of slight changes in systems. Automatica, 1994, 30(1): 95-113
    [2] He Zheng-Jia, Chen Xue-Feng, Duan Chen-Dong, Chen Peng, Toyota T. Several methods for incipient fault prognosis and their applications. Journal of Vibration Engineering, 2004, 17(Suppl): 309-312(何正嘉, 陈雪峰, 段晨东, 陈鹏, 丰田利夫. 早期故障预示的若干方法及应用. 振动工程学, 2004, 17(增刊): 309-312)
    [3] Li Han, Xiao De-Yun. Survey on data driven fault diagnosis methods. Control and Decision, 2011, 26(1): 1-9, 16(李晗, 萧德云. 基于数据驱动的故障诊断方法综述. 控制与决策, 2011, 26(1): 1-9, 16)
    [4] Demetriou M A, Polycarpou M M. Incipient fault diagnosis of dynamical systems using online approximators. IEEE Transactions on Automatic Control, 1998, 43(11): 1612-1617
    [5] Xu Yong-Gang, Ma Hai-Long, Fu Sheng, Zhang Jian-Yu. Theory and applications of weak signal non-linear detection method for incipient fault diagnosis of mechanical equipments. Journal of Vibration Engineering, 2011, 24(5): 529-538(胥永刚, 马海龙, 付胜, 张建宇. 机电设备早期故障微弱信号的非线性检测方法及工程应用. 振动工程学报, 2011, 24(5): 529-538)
    [6] Benveniste A, Basseville M, Moustakides G V. The asymptotic local approach to change detection and model validation. IEEE Transactions on Automatic Control, 1987, 32(7): 583-592
    [7] Polycarpou M M, Helmicki A J. Automated fault detection and accommodation: a learning systems approach. IEEE Transactions on Systems, Man and Cybernetics, 1995, 25(11): 1447-1458
    [8] Zhou Dong-Hua, Xi Yu-Geng, Zhang Zhong-Jun. Non-linear adaptive fault detection filter. International Journal of Systems Science, 1991, 22(12): 2563-2571
    [9] Zhou Dong-Hua, Ye Yin-Zhong. Modern Fault Diagnosis and Fault Tolerant Control. Beijing: Tsinghua University Press, 2000. 265-267(周东华, 叶银忠. 现代故障诊断与容错控制. 北京: 清华大学出版社, 2000. 265-267)
    [10] Norgaard M, Ponlsen N K, Ravn O. New developments in state estimation for nonlinear systems. Automatica, 2000, 36(11): 1627-1638
    [11] Van der merwe R, Wan E. Efficient derivative-free Kalman filters for online learning. In: Proceedings of the 2011 European Symposium on Artificial Neural Networks. Bruges, Belgium, 2001. 205-210
    [12] Wu Yao, Luo Xiong-Lin. Robustness analysis of Kalman filtering algorithm for multirate systems. Acta Automatica Sinica, 2012, 38(2): 156-174(吴瑶, 罗雄麟. 多率系统Kalman滤波算法的鲁棒性分析. 自动化学报, 2012, 38(2): 156-174)
    [13] Zhou Z J, Hu C H, Chen M Y, He H F, Zhang B C. An improved fuzzy Kalman filter for state estimation of non-linear systems. International Journal of Systems Science, 2010, 41(5): 537-546
    [14] Tao Gui-Li, Deng Zi-Li. Self-tuning fusion Kalman filter with unknown parameters and its convergence. Acta Automatica Sinica, 2012, 38(1): 109-119(陶贵丽, 邓自立. 含未知参数的自校正融合Kalman滤波器及其收敛性. 自动化学报, 2012, 38(1): 109-119)
    [15] Arulampalam M S, Maskell S, Gordon N, Clapp T. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Transactions on Signal Processing, 2002, 50(2): 174-188
    [16] Deng Hong-Lun, Liu Guo-Jian. Life reliability of motor bearing used by liquid-floated gyro. Journal of Chinese Inertial Technology, 2005, 13(2): 63-65, 69(邓宏论, 刘郭建. 液浮陀螺电机用轴承的寿命可靠性分析. 中国惯性技术学报, 2005, 13(2): 63-65, 69)
    [17] Hu Chang-Hua, Wang Zhao-Qiang, Zhou Zhi-Jie, Si Xiao-Sheng. An RVM fuzzy model identification method and its application to fault prediction. Acta Automatica Sinica, 2011, 37(4): 503-512(胡昌华, 王兆强, 周志杰, 司小胜. 一种RVM模糊模型辨识方法及在故障预报中的应用. 自动化学报, 2011, 37(4): 503-512)
    [18] Li Lu, Sun Chun-Xiang. Modeling of random drift data of the liquid floated gyro. Piezoelectrics & Acoustooptics, 2011, 33(3): 378-381(李璐, 孙纯祥. 三浮陀螺随机漂移数据建模. 压电与声光, 2011, 33(3): 378-381)
    [19] Weng Hai-Na, Li Zi-Gang, Wan De-Jun. Study on modeling for liquid-floated gyro drift. Journal of Chinese Inertial Technology, 1999, 7(2): 30-34(翁海娜, 李滋刚, 万德钧. 液浮陀螺漂移的试验建模研究. 中国惯性技术学报, 1999, 7(2): 30-34)
  • 加载中
计量
  • 文章访问数:  1600
  • HTML全文浏览量:  99
  • PDF下载量:  1352
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-03-13
  • 修回日期:  2012-07-05
  • 刊出日期:  2013-10-20

目录

    /

    返回文章
    返回