2.765

2022影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种仿生水下机器人的设计与动力学分析

魏清平 王硕 董翔 尚留记 谭民

魏清平, 王硕, 董翔, 尚留记, 谭民. 一种仿生水下机器人的设计与动力学分析. 自动化学报, 2013, 39(8): 1330-1338. doi: 10.3724/SP.J.1004.2013.01330
引用本文: 魏清平, 王硕, 董翔, 尚留记, 谭民. 一种仿生水下机器人的设计与动力学分析. 自动化学报, 2013, 39(8): 1330-1338. doi: 10.3724/SP.J.1004.2013.01330
WEI Qing-Ping, WANG Shuo, DONG Xiang, SHANG Liu-Ji, TAN Min. Design and Kinetic Analysis of a Biomimetic Underwater Vehicle with Two Undulating Long-fins. ACTA AUTOMATICA SINICA, 2013, 39(8): 1330-1338. doi: 10.3724/SP.J.1004.2013.01330
Citation: WEI Qing-Ping, WANG Shuo, DONG Xiang, SHANG Liu-Ji, TAN Min. Design and Kinetic Analysis of a Biomimetic Underwater Vehicle with Two Undulating Long-fins. ACTA AUTOMATICA SINICA, 2013, 39(8): 1330-1338. doi: 10.3724/SP.J.1004.2013.01330

一种仿生水下机器人的设计与动力学分析

doi: 10.3724/SP.J.1004.2013.01330
基金项目: 

Supported by National Natural Science Foundation of China (51175496, 61233014, 61005075), National High Technology Research and Development Program of China (863 Program) (2012AA041402)

Design and Kinetic Analysis of a Biomimetic Underwater Vehicle with Two Undulating Long-fins

Funds: 

Supported by National Natural Science Foundation of China (51175496, 61233014, 61005075), National High Technology Research and Development Program of China (863 Program) (2012AA041402)

More Information
    Corresponding author: WANG Shuo
  • 摘要: 设计了一种基于波动长鳍推进的仿生水下机器人, 两侧长鳍对称安装于机器人本体两侧. 两侧长鳍分别由十个舵机驱动, 并按照余弦函数波动. 设计了实时控制器, 通过调整鳍条的振动频率和幅值达到控制长鳍运动的目的. 加速度信息和角速度信息由一个惯性测量单元采集. 为获取机器人游动性能与振动频率以及振动幅值之间的关系, 本文给出了长鳍波动运动的运动学分析和动力学分析. 本文通过将长鳍分割成若干小单元并单独计算作用于每个小单元上的作用力, 再计算所有小单元作用力在一个波动周期内的合力的方法, 获得了整个长鳍产生的平均推力. 通过前进游动和旋转游动实验, 验证了机构设计、运动学分析和动力学分析的有效性, 最后讨论了游动性能与波动参数之间的关系.
  • [1] Sfakiotakis M, Lane D M, Davies B C. An experimental undulating-fin device using the parallel bellows actuator. In: Proceedings of the 2001 IEEE International Conference on Robotics and Automation. Seoul, Korea: IEEE, 2001. 2356-2362
    [2] Curet O M, Patankar N A, Lauder G V, MacIver M A. Mechanical properties of a bio-inspired robotic knifefish with an undulatory propulsor. Bioinspiration & Biomimetics, 2011, 6(2): 026004
    [3] Sefati S, Neveln I, MacIver M A, Fortune E S, Cowan N J. Counter-propagating waves enhance maneuverability and stability: a bio-inspired strategy for robotic ribbon-fin propulsion. In: Proceedings of the 4th IEEE RAS/EMBS International Conference on Biomedical Robotics and Biomechatronics. Roma, Italy: IEEE, 2012. 1620-1625
    [4] Toda Y, Ikedab H, Sogihara N. The motion of a fish-like underwater vehicle with two undulating side fins. In: Proceedings of the 3rd International Symposium on Aero Aqua Bio-mechanisms. Okinawa, Japan: 2006
    [5] Zhou C L, Low K H. Design and locomotion control of a biomimetic underwater vehicle with fin propulsion. IEEE/ASME Transactions on Mechatronics, 2012, 17(1): 25-35
    [6] Liu F F, Lee K M, Yang C J. Hydrodynamics of an undulating fin for a wave-like locomotion system design. IEEE/ASME Transactions on Mechatronics, 2012, 17(3): 554-562
    [7] Shang L J, Wang S, Tan M, Cheng L. Swimming locomotion modeling for biomimetic underwater vehicle with two undulating long-fins. Robotica, 2012, 30(6): 913-923
    [8] Cochran J, Kanso E, Kelly S D, Xiong H L, Krstic M. Source seeking for two nonholonomic models of fish locomotion. IEEE Transactions on Robotics, 2009, 25(5): 1166-1176
    [9] Willy A, Low K H. Development and initial experiment of modular undulating fin for untethered biorobotic AUVs. In: Proceedings of the 2005 IEEE International Conference on Robotics and Biomimetics. Hong Kong, China: IEEE, 2005. 45-50
    [10] MacIver M A, Fontaine E, Burdick J W. Designing future underwater vehicles: principles and mechanisms of the weakly electric fish. IEEE Journal of Oceanic Engineering, 2004, 29(3): 651-659
    [11] Kowalczyk W, Delgado A. Simulation of fluid flow in a channel induced by three types of fin-like motion. Journal of Bionic Engineering, 2007, 4(3): 165-176
    [12] Rahman M M, Toda Y, Miki H. Computational study on a squid-like underwater robot with two undulating side fins. Journal of Bionic Engineering, 2011, 8(1): 25-32
    [13] Zhou H, Hu T J, Xie H B, Zhang D B, Shen L C. Computational hydrodynamics and statistical modeling on biologically inspired undulating robotic fins: a two-dimensional study. Journal of Bionic Engineering, 2010, 7(1): 66-76
    [14] Zhang Z G, Yamashita N, Yamamoto A, Gondo M, Higuchi T. Modeling and system identification of three-layer structure electrostatic film motors for a robotic fish. In: Proceedings of the 2009 IEEE International Conference on Mechatronics and Automation. Changchun, China: IEEE, 2009. 2729-2734
    [15] Cheng J Y, Zhuang L X, Tong B G. Analysis of swimming three-dimensional waving plates. Journal of Fluid Mechanics, 1991, 232: 341-355
    [16] Cortez R, Fauci L, Cowen N, Dillon R. Simulation of swimming organisms: coupling internal mechanics with external fluid dynamics. Computing in Science & Engineering, 2004, 6(3): 38-45
    [17] Kobayashi S, Kameyama T, Morikawa H. Generation of movement for multi-link propulsion mechanism in fluid. In: Proceedings of the 14th International Conference on Offshore and Polar Engineering. Toulon, France: ISOPE, 2004. 290-294
  • 加载中
计量
  • 文章访问数:  2075
  • HTML全文浏览量:  57
  • PDF下载量:  1526
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-02-24
  • 修回日期:  2013-04-19
  • 刊出日期:  2013-08-20

目录

    /

    返回文章
    返回