2.765

2022影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

线性离散周期系统研究综述

吕灵灵 段广仁 苏海滨 朱安福

吕灵灵, 段广仁, 苏海滨, 朱安福. 线性离散周期系统研究综述. 自动化学报, 2013, 39(7): 973-980. doi: 10.3724/SP.J.1004.2013.00973
引用本文: 吕灵灵, 段广仁, 苏海滨, 朱安福. 线性离散周期系统研究综述. 自动化学报, 2013, 39(7): 973-980. doi: 10.3724/SP.J.1004.2013.00973
LV Ling-Ling, DUAN Guang-Ren, SU Hai-Bin, ZHU An-Fu. A Survey on Linear Discrete Periodic Systems. ACTA AUTOMATICA SINICA, 2013, 39(7): 973-980. doi: 10.3724/SP.J.1004.2013.00973
Citation: LV Ling-Ling, DUAN Guang-Ren, SU Hai-Bin, ZHU An-Fu. A Survey on Linear Discrete Periodic Systems. ACTA AUTOMATICA SINICA, 2013, 39(7): 973-980. doi: 10.3724/SP.J.1004.2013.00973

线性离散周期系统研究综述

doi: 10.3724/SP.J.1004.2013.00973
基金项目: 

国家自然科学基金(11226239, U1204605), 河南省教育厅科学技术研究重点项目(12B120007),华北水利水电大学高层次人才科研启动项目 (201013)资助

详细信息
    通讯作者:

    吕灵灵

A Survey on Linear Discrete Periodic Systems

Funds: 

Supported by National Natural Science Foundation of China (11226239, U1204605), Scientific Research Key Project Fund of the Education Department of Henan Province (12B120007), and High-level Talent Research Program of North China University of Water Resources and Electric Power (201013)

  • 摘要: 由于线性离散周期时变系统在理论和实践双重方面的重要意义,因此成为控制领域研究的重要课题. 本文对目前线性离散周期系统的研究成果加以总结.以系统分析和综合为线索,着重介绍了线性离散周期系统的时不变重构、系统的结构属性、稳定性、零点、极点、模型降解及实现、故障诊断等问题所存在的典型方法. 并对线性离散周期系统领域仍存在的问题和未来的发展方向作了进一步的展望.
  • [1] Zheng Yu-Hong, Wang Ping. A new approach to control satellite attitude via magnetorquers. Journal of Astronautics, 2000, 21(3): 94-99 (郑育红, 王平. 一种用磁力矩器控制卫星姿态的新方法. 宇航学报, 2000, 21(3): 94-99)
    [2] Cole J W, Calico R A. Nonlinear oscillations of a controlled periodic system. AIAA Journal of Guidance, Control, and Dynamics, 1992, 15(3): 627-633
    [3] Nie J B, Sheh E, Horowitz R. Optimal H∞ control for hard disk drives with an irregular sampling rate. In: Proceedings of 2011 American Control Conference. San Francisco, USA: IEEE, 2011. 5382-5387
    [4] Allen M S, Sracic M W, Chauhan S, Hansen M H. Output-only modal analysis of linear time-periodic systems with application to wind turbine simulation data. Mechanical Systems and Signal Processing, 2011, 25(4): 1174-1191
    [5] Chauvin J, Corde G, Petit N, Rouchon P. Periodic input estimation for linear periodic systems: automotive engine applications. Automatica, 2007, 43(6): 971-980
    [6] Vaidyanathan P P. Multirate digital filters, filter banks, polyphase networks, and applications: a tutorial. Proceedings of the IEEE, 1990, 78(1): 56-93
    [7] Wornell G W. Emerging applications of multirate signal processing and wavelets in digital communications. Proceedings of the IEEE, 1996, 84(4): 586-603
    [8] Bittanti S, Colaneri P. Invariant representations of discrete-time periodic systems. Automatica, 2000, 36(12): 1777-1793
    [9] Kranc G M. Input-output analysis of multirate feedback systems. IRE Transactions on Automatic Control, 1957, 3(1): 21-28
    [10] Jury E I, Mullin F J. The analysis of sampled-data control systems with a periodically time-varying sampling rate. IRE Transactions on Automatic Control, 1959, AC-4(1): 15-21
    [11] Rriedland B. Sampled-data control systems containing periodically varying members. In: Proceedings of the 1st IFAC Congress. Moscow, U.S.S.R., 1960. 361-368
    [12] Meyer R A, Burrus C S. A unified analysis of multirate and periodically time-varying digital filters. IEEE Transactions on Circuits and Systems, 1975, 22(3): 162-168
    [13] Park B, Verriest E I. Canonical forms on discrete linear periodically time-varying systems and a control application. In: Proceedings of the 28th IEEE Conference on Decision and Control. Tampa, USA: IEEE, 1989. 1220-1225
    [14] Flamm D S. A new shift-invariant representation for periodic linear systems. Systems and Control Letters, 1991, 17(1): 9-14
    [15] Colaneri P, Kucera V. The model matching problem for periodic discrete-time systems. IEEE Transactions on Automatic Control, 1997, 42(10): 1472-1476
    [16] Bittanti S, Bolzern P. On the structure theory of discrete-time linear systems. International Journal of Systems Science, 1986, 17(1): 33-47
    [17] Bittanti S, Colaneri P, de Nicolao G. Discrete-time linear periodic systems: a note on the reachability and controllability interval length. Systems & Control Letters, 1986, 8(1): 75-78
    [18] Bittanti S, Colaneri P. Analysis of discrete-time linear periodic systems. Control and Dynamic Systems, 1996, 78: 313-339
    [19] Bittanti S, Colaneri P. Discrete-time linear periodic systems: gramian and modal criteria for reachability and controllability. International Journal of Control, 1985, 41(4): 909-928
    [20] Bittanti S, Guardabassi G, Maffezzoni C, Silverman L. Periodic systems: controllability and the matrix Riccati equation. SIAM Journal on Control and Optimization, 1978, 16(1): 37-40
    [21] Bittanti S, Bolzern P, Colaneri P. The extended periodic Lyapunov lemma. Automatica, 1985, 21(5): 603-605
    [22] Colaneri P, Souza C D, Kucera V. Output stabilizability of periodic systems: necessary and sufficient conditions. In: Proceedings of the 1998 American Control Conference. Philadelphia, USA: IEEE, 1998. 2795-2796
    [23] Desoer C A, Schulman J O. Zeros and poles of matrix transfer functions and their dynamical interpretation. IEEE Transactions on Circuits and Systems, 1974, 21(1): 3-8
    [24] Francis B A, Wonham W M. The role of transmission zeros in linear multivariable regulators. International Journal of Control, 1975, 22(5): 657-681
    [25] Macfarlane A G J, Karcanias N. Poles and zeros of linear multivariable systems: a survey of the algebraic, geometric and complex-variable theory. International Journal of Control, 1976, 24(1): 33-74
    [26] Morse A S. Structural invariants of linear multivariable systems. SIAM Journal on Control, 1973, 11(3): 446-465
    [27] Bolzern P, Colaneri P, Scattolini R. Zeros of discrete-time linear periodic systems. IEEE Transactions on Automatic Control, 1986, 31(11): 1057-1058
    [28] Grasselli O M, Longhi S. Zeros and poles of linear periodic multivariable discrete-time systems. Circuits, Systems and Signal Processing, 1988, 7(3): 361-380
    [29] Grasselli O M, Longhi S. Finite zero structure of linear periodic discrete-time systems. International Journal of Systems Science, 1991, 22(10): 1785-1806
    [30] Varga A, van Dooren P. On computing the zeros of periodic systems. In: Proceeding of the 41st IEEE Conference on Decision and Control. Las Vegas, USA: IEEE, 2002. 2546-2551
    [31] Colaneri P, Longhi S. The realization problem for linear periodic systems. Automatica, 1995, 31(5): 775-779
    [32] Gohberg I, Kaashoek M A, Lerer L. Minimality and realization of discrete time-varying systems. Operator Theory: Advances and Applications, 1992, 56: 261-296
    [33] Varga A. Balancing related methods for minimal realization of periodic systems. Systems & Control Letters, 1999, 36(5): 339-349
    [34] Varga A. Computation of minimal periodic realizations of transfer-function matrices. IEEE Transactions on Automatic Control, 2004, 49(1): 146-149
    [35] Varga A. Balanced truncation model reduction of periodic systems. In: Proceedings of the 39th IEEE Conference on Decision and Control. Sydney, NSW: IEEE, 2000. 2379-2384
    [36] Farhood M, Beck C L, Dullerud G E. Model reduction of periodic systems: a lifting approach. Automatica, 2005, 41(6): 1085-1090
    [37] Kleinman D L. Stabilizing a discrete, constant, linear system with application to iterative methods for solving the Riccati equation. IEEE Transactions on Automatic Control, 1974, 19(3): 252-254
    [38] Kwon W H, Pearson A E. On the stabilization of a discrete constant linear system. IEEE Transactions on Automatic Control, 1975, 20(6): 800-801
    [39] Kwon W H, Pearson A E. A modified quadratic cost problem and feedback stabilization of a linear system. IEEE Transactions on Automatic Control, 1977, 22(5): 838-842
    [40] de Nicolao G, Strada S. On the stability of receding-horizon LQ control with zero-state terminal constraint. IEEE Transactions on Automatic Control, 1997, 42(2): 257-260
    [41] de Nicolao G. Cyclomonotonicity and stabilizability properties of solutions of the difference periodic Riccati equation. IEEE Transactions on Automatic Control, 1992, 37(9): 1405-1410
    [42] de Nicolao G, Strada S. On the use of reachability Gramians for the stabilization of linear periodic systems. Automatica, 1997, 33(4): 729-732
    [43] Bittanti S, Colaneri P, Nicolao G D. The difference periodic Riccati equation for the periodic prediction problem. IEEE Transactions on Automatic Control, 1988, 33(8): 706-712
    [44] Varga A, Pieters S. Gradient-based approach to solve optimal periodic output feedback control problems. Automatica, 1998, 34(4): 477-481
    [45] Zhou B, Duan G R, Lin Z L. A parametric periodic Lyapunov equation with application in semi-global stabilization of discrete-time periodic systems subject to actuator saturation. Automatica, 2011, 47(2): 316-325
    [46] de Souza C E, Trofino A. An LMI approach to stabilization of linear discrete-time periodic systems. International Journal of Control, 2000, 73(8): 696-703
    [47] Sun K, Xie G M. Analysis and control of a class of uncertain linear periodic discrete-time systems. Applied Mathematics and Mechanics, 2009, 30(4): 475-488
    [48] Zhou B, Zheng W X, Duan G R. Stability and stabilization of discrete-time periodic linear systems with actuator saturation. Automatica, 2011, 47(8): 1813-1820
    [49] Longhi S, Zulli R. A note on robust pole assignment for periodic systems. IEEE Transactions on Automatic Control, 1996, 41(10): 1493-1497
    [50] Longhi S, Zulli R. A robust periodic pole assignment algorithm. IEEE Transactions on Automatic Control, 1995, 40(5): 890-894
    [51] Sreedhar J, van Dooren P. Pole placement via the periodic Schur decomposition. In: Proceedings of the American Control Conference. San Francisco, USA: IEEE, 1993. 1563-1567
    [52] Hernández V, Urbano A M. Pole-placement problem for discrete-time linear periodic systems. International Journal of Control, 1989, 50(1): 361-371
    [53] Aeyels D, Willems J L. Pole assignment for linear periodic systems by memoryless output feedback. IEEE Transactions on Automatic Control, 1995, 40(4): 735-739
    [54] Varga A. Robust and minimum norm pole assignment with periodic state feedback. IEEE Transactions on Automatic Control, 2000, 45(5): 1017-1022
    [55] Lv L L, Duan G R, Zhou B. Parametric pole assignment and robust pole assignment for discrete-time linear periodic systems. SIAM Journal on Control and Optimization, 2010, 48(6): 3975-3996
    [56] Lv L L, Duan G R, Su H B. Robust dynamical compensator design for discrete-time linear periodic systems. Journal of Global Optimization, 2012, 52(2): 291-304
    [57] Varga A. Computation of L∞ norm of linear discrete-time periodic systems. In: Proceedings of the 17th International Symposium on Mathematical Theory of Networks and Systems. Kyoto, Japan, 2006
    [58] Sreedhar J, van Dooren P, Bamieh B. Computing H∞-norm of discrete-time periodic systems-a quadratically convergent algorithm. In: Proceedings of the 1997 European Control Conference. Brussels, Belgium, 1997
    [59] Wisniewski R, Stoustrup J. Generalized H2 control synthesis for periodic systems. In: Proceedings of the American Control Conference. Arlington, VA: IEEE, 2001. 2600-2605
    [60] Farges C, Peaucelle D, Arzelier D, Daafouz J. Robust H2 performance analysis and synthesis of linear polytopic discrete-time periodic systems via LMIs. Systems & Control Letters, 2007, 56(2): 159-166
    [61] Peaucelle D, Ebihara Y, Arzelier D. Robust H2 perfomance of discrete-time periodic systems: LMIs with reduced dimensions. In: Proceedings of the 17th World Congress the International Federation of Automatic Control. Seoul, Korea: IFAC, 2008. 1348-1353
    [62] Ebihara Y, Peacelle D, Arzelier D. Periodically time-varying dynamical controller synthesis for polytopic-type uncertain discrete-time linear systems. In: Proceedings of the 47th IEEE Conference on Decision and Control. Cancun: IEEE, 2008. 5438-5443
    [63] Fadali M S, Gummuluri S. Robust observer-based fault detection for periodic systems. In: Proceedings of the 2001 American Control Conference. Arlington, VA: IEEE, 2001. 464-469
    [64] Varga A. Design of fault detection filters for periodic systems. In: Proceedings of the 43rd IEEE Conference on Decision and Control. Paradise Island, Bahamas: IEEE, 2004. 4800-4805
    [65] Zhang P, Ding S X, Wang G Z, Zhou D H. Fault detection of linear discrete-time periodic systems. IEEE Transactions on Automatic Control, 2005, 50(2): 239-244
    [66] Zhang P, Ding S X. Disturbance decoupling in fault detection of linear periodic systems. Automatica, 2007, 43(8): 1410-1417
    [67] Djemili I, Aitouche A, Bouamama B O. Sensors FDI scheme of linear discrete-time periodic systems using principal component analysis. In: Proceedings of 2010 Conference on Control and Fault-Tolerant Systems. Nice, France: IEEE, 2010. 203-208
    [68] Gondhalekar R, Colin N J. MPC of constrained discrete-time linear periodic systems-A framework for asynchronous control: strong feasibility, stability and optimality via periodic invariance. Automatica, 2011, 47(2): 326-333
    [69] van Paul D, Sreedhar J. When is a periodic discrete-time system equivalent to a time-invariant one? Linear Algebra and its Applications, 1994, 212-213: 131-151
    [70] Hayakawa Y, Jimbo T. Floquet transformations for discrete-time systems: equivalence between periodic systems and time-invariant ones. In: Proceedings of the 47th IEEE Conference on Decision and Control. Cancun, Mexico: IEEE, 2008. 5140-5145
    [71] DaCunha J J, Davis J M. A unified Floquet theory for discrete, continuous, and hybrid periodic linear systems. Journal of Differential Equations, 2011, 251(11): 2987-3027% (吕灵灵, 段广仁, 周彬. 线性离散周期系统输出反馈参数化极点配置. 自动化学报, 2010, 36(1): 113-120)%
    [72] Zhang W. Reinforcement Learning for Job-Shop Scheduling [Ph.D. dissertation], Peking University, China, 1996%
    [73] Sreedhar J, van Dooren P. Periodic Schur form and some matrix equations. Systems and Networks: Mathematical Theory and Applications, 1993, 77: 339-362%
    [74] Larin V B. Solution of the discrete-time periodic Riccati equations (LMI approach). Stability and Control: Theory and Application, 2004, 6(2): 102-108
  • 加载中
计量
  • 文章访问数:  1873
  • HTML全文浏览量:  82
  • PDF下载量:  1340
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-03-27
  • 修回日期:  2012-08-14
  • 刊出日期:  2013-07-20

目录

    /

    返回文章
    返回