| 
	                    [1]
	                 | 
				
					衣鹏, 洪奕光. 分布式合作优化及其应用. 中国科学: 数学, 2016, 46(10): 1547−1564Yi Peng, Hong Yi-Guang. Distributed cooperative optimization and its applications. Scientia Sinica Mathematica, 2016, 46(10): 1547−1564
					 | 
			
		
				| 
	                    [2]
	                 | 
				
					谢佩, 游科友, 洪奕光, 谢立华. 网络化分布式凸优化算法研究进展. 控制理论与应用, 2018, 35(7): 918−927 doi:  10.7641/CTA.2018.80205Xie Pei, You Ke-You, Hong Yi-Guang, Xie Li-Hua. A survey of distributed convex optimization algorithms over networks. Control Theory and Applications, 2018, 35(7): 918−927 doi:  10.7641/CTA.2018.80205
					 | 
			
		
				| 
	                    [3]
	                 | 
				
					Nedić A, Liu J. Distributed optimization for control. Annual Review of Control, Robotics, and Autonomous Systems, 2018, 1(1): 77−103
					 | 
			
		
				| 
	                    [4]
	                 | 
				
					Yang T, Yi X L, Wu J F, Yuan Y, Wu D, Meng Z Y, et al. A survey of distributed optimization. Annual Reviews in Control, 2019, 47: 278−305 doi:  10.1016/j.arcontrol.2019.05.006
					 | 
			
		
				| 
	                    [5]
	                 | 
				
					杨涛, 柴天佑. 分布式协同优化的研究现状与展望. 中国科学: 技术科学, 2020, 50(11): 1414−1425 doi:  10.1360/SST-2020-0040Yang Tao, Chai Tian-You. Research status and prospects of distributed collaborative optimization. Scientia Sinica Technologica, 2020, 50(11): 1414−1425 doi:  10.1360/SST-2020-0040
					 | 
			
		
				| 
	                    [6]
	                 | 
				
					邓文, 李伟健, 曾宪琳, 洪奕光. 矩阵方程的分布式求解算法研究概述. 控制理论与应用, 2021, 38(11): 1695−1706 doi:  10.7641/CTA.2021.10671Deng Wen, Li Wei-Jian, Zeng Xian-Lin, Hong Yi-Guang. A survey of distributed algorithms for solving matrix equations. Control Theory and Applications, 2021, 38(11): 1695−1706 doi:  10.7641/CTA.2021.10671
					 | 
			
		
				| 
	                    [7]
	                 | 
				
					杨涛, 徐磊, 易新蕾, 张圣军, 陈蕊娟, 李渝哲. 基于事件触发的分布式优化算法. 自动化学报, 2022, 48(1): 133−143Yang Tao, Xu Lei, Yi Xin-Lei, Zhang Sheng-Jun, Chen Rui-Juan, Li Yu-Zhe. Event-triggered distributed optimization algorithms. Acta Automatica Sinica, 2022, 48(1): 133−143
					 | 
			
		
				| 
	                    [8]
	                 | 
				
					Yang S F, Liu Q S, Wang J. A multi-agent system with a proportional-integral protocol for distributed constrained optimization. IEEE Transactions on Automatic Control, 2016, 62(7): 3461−3467
					 | 
			
		
				| 
	                    [9]
	                 | 
				
					Zhu Y N, Yu W W, Wen G H, Chen G R. Projected primal-dual dynamics for distributed constrained nonsmooth convex optimization. IEEE Transactions on Cybernetics, 2018, 50(4): 1776−1782
					 | 
			
		
				| 
	                    [10]
	                 | 
				
					Yuan K, Ling Q, Yin W T. On the convergence of decentralized gradient descent. SIAM Journal on Optimization, 2016, 26(3): 1835−1854 doi:  10.1137/130943170
					 | 
			
		
				| 
	                    [11]
	                 | 
				
					Pu S, Shi W, Xu J M, Nedić A. Push-pull gradient methods for distributed optimization in networks. IEEE Transactions on Automatic Control, 2021, 66(1): 1−16 doi:  10.1109/TAC.2020.2972824
					 | 
			
		
				| 
	                    [12]
	                 | 
				
					Nedić A, Ozdaglar A, Parrilo P A. Constrained consensus and optimization in multi-agent networks. IEEE Transactions on Automatic Control, 2010, 55(4): 922−938 doi:  10.1109/TAC.2010.2041686
					 | 
			
		
				| 
	                    [13]
	                 | 
				
					Lei J L, Chen H F, Fang H T. Primal-dual algorithm for distributed constrained optimization. Systems and Control Letters, 2016, 96: 110−117
					 | 
			
		
				| 
	                    [14]
	                 | 
				
					Cheng S S, Liang S, Fan Y, Hong Y G. Distributed gradient tracking for unbalanced optimization with different constraint sets. IEEE Transactions on Automatic Control, 2023, 68(6): 3633−3640
					 | 
			
		
				| 
	                    [15]
	                 | 
				
					Beck A, Teboulle M. Mirror descent and nonlinear projected subgradient methods for convex optimization. Operations Research Letters, 2003, 31(3): 167−175 doi:  10.1016/S0167-6377(02)00231-6
					 | 
			
		
				| 
	                    [16]
	                 | 
				
					Yuan D M, Hong Y G, Ho D W, Jiang G P. Optimal distributed stochastic mirror descent for strongly convex optimization. Automatica, 2018, 90: 196−203 doi:  10.1016/j.automatica.2017.12.053
					 | 
			
		
				| 
	                    [17]
	                 | 
				
					Yang Y, Jia Q S, Xu Z B, Guan X H, Spanos C J. Proximal ADMM for nonconvex and nonsmooth optimization. Automatica, 2022, 146: Article No. 110551
					 | 
			
		
				| 
	                    [18]
	                 | 
				
					Hou J, Zeng X L, Wang G, Sun J, Chen J. Distributed momentum-based Frank-Wolfe algorithm for stochastic optimization. IEEE/CAA Journal of Automatica Sinica, 2022, 10(3): 685−699
					 | 
			
		
				| 
	                    [19]
	                 | 
				
					Chen S X, Garcia A, Shahrampour S. On distributed nonconvex optimization: Projected subgradient method for weakly convex problems in networks. IEEE Transactions on Automatic Control, 2021, 67(2): 662−675
					 | 
			
		
				| 
	                    [20]
	                 | 
				
					Wei M L, Yu W W, Liu H Z, Xu Q. Distributed weakly convex optimization under random time-delay interference. IEEE Transactions on Network Science and Engineering, 2024, 11(1): 212−224 doi:  10.1109/TNSE.2023.3294414
					 | 
			
		
				| 
	                    [21]
	                 | 
				
					Wang Y H, Zhao W X, Hong Y G, Zamani M. Distributed subgradient-free stochastic optimization algorithm for nonsmooth convex functions over time-varying networks. SIAM Journal on Control and Optimization, 2019, 57(4): 2821−2842 doi:  10.1137/18M119046X
					 | 
			
		
				| 
	                    [22]
	                 | 
				
					Pang Y P, Hu G Q. Randomized gradient-free distributed optimization methods for a multiagent system with unknown cost function. IEEE Transactions on Automatic Control, 2019, 65(1): 333−340
					 | 
			
		
				| 
	                    [23]
	                 | 
				
					Pang Y P, Hu G Q. Gradient-free distributed optimization with exact convergence. Automatica, 2022, 144: Article No. 110474
					 | 
			
		
				| 
	                    [24]
	                 | 
				
					Yi X L, Zhang S J, Yang T, Johansson K H. Zeroth-order algorithms for stochastic distributed nonconvex optimization. Automatica, 2022, 142: Article No. 110353 doi:  10.1016/j.automatica.2022.110353
					 | 
			
		
				| 
	                    [25]
	                 | 
				
					Xu L, Yi X L, Deng C, Shi Y, Chai T Y, Yang T. Quantized zeroth-order gradient tracking algorithm for distributed nonconvex optimization under Polyak-Łojasiewicz condition. IEEE Transactions on Cybernetics, 2024, 54(10): 5746−5758 doi:  10.1109/TCYB.2024.3384924
					 | 
			
		
				| 
	                    [26]
	                 | 
				
					Wang R Y, Fan Y, Cheng S S. Zeroth-order algorithm design with orthogonal direction for distributed weakly convex optimization. In: Proceedings of the 63rd IEEE Conference on Decision and Control (CDC2024). Milan, Italy: IEEE, 2024.
					 | 
			
		
				| 
	                    [27]
	                 | 
				
					Juditsky A, Kwon J, Moulines É. Unifying mirror descent and dual averaging. Mathematical Programming, 2023, 199: 793−830
					 | 
			
		
				| 
	                    [28]
	                 | 
				
					Moreau J J. Proximitè et dualitè dans un espace hilbertien. Bull. De La Sociètè Mathèmatique De France, 1965, 93: 273−299
					 | 
			
		
				| 
	                    [29]
	                 | 
				
					刘浩洋, 户将, 李勇锋, 文再文. 最优化: 建模、算法与理论. 北京: 高等教育出版社, 2020.Liu Hao-Yang, Hu Jiang, Li Yong-Feng, Wen Zai-Wen. Optimization: Modeling, Algorithm and Theory. Beijing: Higher Education Press, 2020.
					 | 
			
		
				| 
	                    [30]
	                 | 
				
					Zhou W X, Zhou Y, Chen X L, Ning T T, Chen H Y, Guo Q, et al. Pancreatic cancer-targeting exosomes for enhancing immunotherapy and reprogramming tumor microenvironment. Biomaterials, 2021, 268: Article No. 120546 doi:  10.1016/j.biomaterials.2020.120546
					 | 
			
		
				| 
	                    [31]
	                 | 
				
					Ram S S, Nedić A, Veeravalli V V. Distributed stochastic subgradient projection algorithms for convex optimization. Journal of Optimization Theory and Applications, 2010, 147: 516−545 doi:  10.1007/s10957-010-9737-7
					 |