2.793

2018影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于多尺度上下文的图像标注算法

周全 王磊 周亮 郑宝玉

周全, 王磊, 周亮, 郑宝玉. 基于多尺度上下文的图像标注算法. 自动化学报, 2014, 40(12): 2944-2949. doi: 10.3724/SP.J.1004.2014.02944
引用本文: 周全, 王磊, 周亮, 郑宝玉. 基于多尺度上下文的图像标注算法. 自动化学报, 2014, 40(12): 2944-2949. doi: 10.3724/SP.J.1004.2014.02944
ZHOU Quan, WANG Lei, ZHOU Liang, ZHENG Bao-Yu. Multi-scale Contextual Image Labeling. ACTA AUTOMATICA SINICA, 2014, 40(12): 2944-2949. doi: 10.3724/SP.J.1004.2014.02944
Citation: ZHOU Quan, WANG Lei, ZHOU Liang, ZHENG Bao-Yu. Multi-scale Contextual Image Labeling. ACTA AUTOMATICA SINICA, 2014, 40(12): 2944-2949. doi: 10.3724/SP.J.1004.2014.02944

基于多尺度上下文的图像标注算法


DOI: 10.3724/SP.J.1004.2014.02944
详细信息
    作者简介:

    王磊 南京邮电大学通信与信息工程学院副教授, 博士. 主要研究方向为无线通信. E-mail: wanglei@njupt.edu.cn

    通讯作者: 周全 南京邮电大学通信与信息工程学院讲师, 博士. 主要研究方向为图像/视频处理, 计算机视觉, 机器学习与模式识别. 本文通信作者.E-mail: quan.zhou@njupt.edu.cn
  • 基金项目:

    国家自然科学基金(61201165,61271240,61201164),高等学校博士学科点专项科研基金(20113223120002),中国博士后科学基金(2013M531392),江苏高校优势学科建设工程资助项目,东南大学移动通信国家重点实验室开放研究基金(2011D05),南京邮电大学科研基金(NY210072,NY213067)资助

Multi-scale Contextual Image Labeling

More Information
  • Fund Project:

    Supported by National Natural Science Foundation of China (61201165, 61271240, 61201164), Specialized Research Fund for the Doctoral Program of Higher Education (20113223120002), China Postdoctoral Science Foundation (2013M531392), A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions, The Open Research Fund of National Mobile Communications Research Laboratory, Southeast University (2011D05), and the Scientific Research Foundation of Nanjing University of Posts and Telecommunications (NY210072, NY213067)

  • 摘要: 提出了一种在层次化分割框架下,通过结合图像的底层局部特征以及高层的上下文特征,进行图像自动语义标注的新算法. 该算法的核心思想在于对较大的图像区域的识别结果有利于对其包含的较小图像区域进行识别.算法首先对每层分割后的图像区域进行识别, 然后利用贝叶斯定理将各层区域识别的结果通过线性加权的方式进行融合,从而达到对整幅图像进行自动语义标注的目的.与现有的图像标注算法相比,仿真实验表明本文算法获得了最好的标注精度以及最快的标注速度.
  • [1] Shotton J, Winn J W, Rother C, Criminisi A. Textonboost for image understanding: multi-class object recognition and segmentation by jointly modeling texture, layout, and context. International Journal of Computer Vision, 2009, 81(1): 2-23
    [2] [2] Tu Z W, Bai X. Auto-context and its application to highlevel vision tasks and 3D brain image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(10): 1744-1757
    [3] [3] Gould S, Rodgers J, Cohen D, Elidan E, Koller D. Multi-class segmentation with relative location prior. International Journal of Computer Vision, 2008, 80(3): 300-316
    [4] [4] Gould S, Fulton R, Koller D. Decomposing a scene into geometric and semantically consistent regions. In: Proceedings of the 12th IEEE Conference on Computer Vision. Kyoto, Japan: IEEE, 2009. 1-8
    [5] Jiang Li-Xing, Hou Jin. Image annotation using the ensemble learning. Acta Automatica Sinica, 2012, 38(8): 1257-1262(蒋黎星, 侯进. 基于集成分类算法的自动图像标注. 自动化学报, 2012, 38(8): 1257-1262)
    [6] Zhang Su-Lan, Guo Ping, Zhang Ji-Fu, Hu Li-Hua. Automatic semantic image annotation with granular analysis method. Acta Automatica Sinica, 2012, 38(5): 688-697(张素兰, 郭平, 张继福, 胡立华. 图像语义自动标注及其粒度分析方法. 自动化学报, 2012, 38(5): 688-697)
    [7] Yang Dong, Zhou Xiu-Ling, Guo Ping. Image annotation with Bayesian universal background model. Acta Automatica Sinica, 2013, 39(10): 1674-1680(杨栋, 周秀玲, 郭平. 基于贝叶斯通用背景模型的图像标注. 自动化学报, 2013, 39(10): 1674-1680)
    [8] [8] Lafferty J, McCallum A, Pereira F. Conditional random fields: probabilistic models for segmenting and labeling sequence data. In: Proceedings of the 2008 IEEE Conference on Machine Learning. Helsinki, Finland: IEEE, 2008. 282-289
    [9] [9] Galleguillos C, Rabinovich A, Belongie S. Object categorization using co-occurrence, location and appearance. In: Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition. Anchorage, USA: IEEE, 2008. 1-8
    [10] Hoiem D, Efros A A, Hebert M. Geometric context from a single image. In: Proceedings of the 2005 IEEE Conference on Computer Vision. Beijing, China: IEEE, 2005. 654-661
    [11] He X M, Zemel R S, Ray D. Learning and incorporating top-down cues in image segmentation. In: Proceedings of the 2006 Europe Conference on Computer Vision. Berlin Heidelberg: Springer, 2006. 338-351
    [12] Medin D L, Schaffer M M. Context theory of classification learning. Psychological Review, 1978, 85(3): 207-238
    [13] Yang L, Meer P, Foran D J. Multiple class segmentation using a unified framework over mean-shift patches. In: Proceedings of the 2007 IEEE Conference on Computer Vision and Pattern Recognition. Minneapolis, USA: IEEE, 2007. 1-8
    [14] Comaniciu D, Meer P. Mean shift: a robust approach toward feature space analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(5): 603-617
    [15] Elkan C. Using the triangle inequality to accelerate k-means. In: Proceedings of the 2003 IEEE Conference on Machine Learning. Washington D.C., USA: IEEE, 2003. 147-153
    [16] Collins M, Schapire R, Singer Y. Logistic regression, adaboost and Bregman distances. Machine Learning, 2002, 48(1-3): 253-285
    [17] Yao B, Yang X, Zhu S C. Introduction to a large scale general purpose groundtruth dataset: methodology, annotation tool, and benchmark. In: Proceedings of the 2009 Energy Minimization Methods in Computer Vision and Pattern Recognition. Berlin, Heidelberg: Springer-Verlag, 2007. 169-183
  • [1] 倪鼎, 马洪兵. 基于近邻协同的高光谱图像谱-空联合分类[J]. 自动化学报, 2015, 41(2): 273-284. doi: 10.16383/j.aas.2015.c140043
    [2] 唐利明, 田学全, 黄大荣, 王晓峰. 结合FCMS与变分水平集的图像分割模型[J]. 自动化学报, 2014, 40(6): 1233-1248. doi: 10.3724/SP.J.1004.2014.01233
    [3] 宋艳涛, 纪则轩, 孙权森. 基于图像片马尔科夫随机场的脑MR图像分割算法[J]. 自动化学报, 2014, 40(8): 1754-1763. doi: 10.3724/SP.J.1004.2014.01754
    [4] 汪然, 许漫坤, 平西建, 张涛. 基于分割的空域图像隐写分析[J]. 自动化学报, 2014, 40(12): 2936-2943. doi: 10.3724/SP.J.1004.2014.02936
    [5] 李艳凤, 陈后金, 杨娜, 张胜君. 基于解剖学特征的乳腺X线图像胸肌分割[J]. 自动化学报, 2013, 39(8): 1265-1272. doi: 10.3724/SP.J.1004.2013.01265
    [6] 刘松涛, 殷福亮. 基于图割的图像分割方法及其新进展[J]. 自动化学报, 2012, 38(6): 911-922. doi: 10.3724/SP.J.1004.2012.00911
    [7] 魏巍, 申铉京, 千庆姬. 工业检测图像灰度波动变换自适应阈值分割算法[J]. 自动化学报, 2011, 37(8): 944-953. doi: 10.3724/SP.J.1004.2011.00944
    [8] 韩守东, 赵勇, 陶文兵, 桑农. 基于高斯超像素的快速Graph Cuts图像分割方法[J]. 自动化学报, 2011, 37(1): 11-20. doi: 10.3724/SP.J.1004.2011.00011
    [9] 徐丹蕾, 杜兰, 刘宏伟, 洪灵, 李彦兵. 一种基于变分相关向量机的特征选择和分类结合方法[J]. 自动化学报, 2011, 37(8): 932-943. doi: 10.3724/SP.J.1004.2011.00932
    [10] 张晨光, 李玉鑑. 哈希图半监督学习方法及其在图像分割中的应用[J]. 自动化学报, 2010, 36(11): 1527-1533. doi: 10.3724/SP.J.1004.2010.01527
    [11] 王晏, 孙怡. 自适应Mean Shift算法的彩色图像平滑与分割算法[J]. 自动化学报, 2010, 36(12): 1637-1644. doi: 10.3724/SP.J.1004.2010.01637
    [12] 刘博, 黄剑华, 唐降龙, 刘家锋, 张英涛. 结合全局概率密度差异与局部灰度拟合的超声图像分割[J]. 自动化学报, 2010, 36(7): 951-959. doi: 10.3724/SP.J.1004.2010.00951
    [13] 殷慧, 曹永锋, 孙洪. 基于多维金字塔表达和AdaBoost的高分辨率SAR图像城区场景分类算法[J]. 自动化学报, 2010, 36(8): 1099-1106. doi: 10.3724/SP.J.1004.2010.01099
    [14] 康文雄, 邓飞其. 基于方向场分布率的静脉图像分割方法[J]. 自动化学报, 2009, 35(12): 1496-1502. doi: 10.3724/SP.J.1004.2009.01496
    [15] 彭真明, 蒋彪, 肖峻, 孟凡斌. 基于并行点火PCNN模型的图像分割新方法[J]. 自动化学报, 2008, 34(9): 1169-1173. doi: 10.3724/SP.J.1004.2008.01169
    [16] 胡正平, 谭营. 基于目标模糊置信度描述驱动的区域能量进化增长图像分割算法[J]. 自动化学报, 2008, 34(9): 1047-1052. doi: 10.3724/SP.J.1004.2008.01047
    [17] 陈果, 左洪福. 图像的自适应模糊阈值分割法[J]. 自动化学报, 2003, 29(5): 791-796.
    [18] 桑农, 张天序. 基于Hopfield神经网络的FLIR图像分割[J]. 自动化学报, 2001, 27(3): 303-309.
    [19] 吴成柯, 刘靖, 侯格贤. 图像分割的多参量遗传算法[J]. 自动化学报, 1998, 24(3): 410-413.
    [20] 刘雷健, 杨静宇, 曹雨龙, 邬永革, 汪华峰. 肺癌细胞识别彩色图像处理系统[J]. 自动化学报, 1996, 22(3): 382-384.
  • 加载中
计量
  • 文章访问数:  1574
  • HTML全文浏览量:  102
  • PDF下载量:  709
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-12-03
  • 修回日期:  2014-05-23
  • 刊出日期:  2014-12-20

基于多尺度上下文的图像标注算法

doi: 10.3724/SP.J.1004.2014.02944
    基金项目:

    国家自然科学基金(61201165,61271240,61201164),高等学校博士学科点专项科研基金(20113223120002),中国博士后科学基金(2013M531392),江苏高校优势学科建设工程资助项目,东南大学移动通信国家重点实验室开放研究基金(2011D05),南京邮电大学科研基金(NY210072,NY213067)资助

    作者简介:

    王磊 南京邮电大学通信与信息工程学院副教授, 博士. 主要研究方向为无线通信. E-mail: wanglei@njupt.edu.cn

    通讯作者: 周全 南京邮电大学通信与信息工程学院讲师, 博士. 主要研究方向为图像/视频处理, 计算机视觉, 机器学习与模式识别. 本文通信作者.E-mail: quan.zhou@njupt.edu.cn

摘要: 提出了一种在层次化分割框架下,通过结合图像的底层局部特征以及高层的上下文特征,进行图像自动语义标注的新算法. 该算法的核心思想在于对较大的图像区域的识别结果有利于对其包含的较小图像区域进行识别.算法首先对每层分割后的图像区域进行识别, 然后利用贝叶斯定理将各层区域识别的结果通过线性加权的方式进行融合,从而达到对整幅图像进行自动语义标注的目的.与现有的图像标注算法相比,仿真实验表明本文算法获得了最好的标注精度以及最快的标注速度.

English Abstract

周全, 王磊, 周亮, 郑宝玉. 基于多尺度上下文的图像标注算法. 自动化学报, 2014, 40(12): 2944-2949. doi: 10.3724/SP.J.1004.2014.02944
引用本文: 周全, 王磊, 周亮, 郑宝玉. 基于多尺度上下文的图像标注算法. 自动化学报, 2014, 40(12): 2944-2949. doi: 10.3724/SP.J.1004.2014.02944
ZHOU Quan, WANG Lei, ZHOU Liang, ZHENG Bao-Yu. Multi-scale Contextual Image Labeling. ACTA AUTOMATICA SINICA, 2014, 40(12): 2944-2949. doi: 10.3724/SP.J.1004.2014.02944
Citation: ZHOU Quan, WANG Lei, ZHOU Liang, ZHENG Bao-Yu. Multi-scale Contextual Image Labeling. ACTA AUTOMATICA SINICA, 2014, 40(12): 2944-2949. doi: 10.3724/SP.J.1004.2014.02944
参考文献 (17)

目录

    /

    返回文章
    返回