2.793

2018影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

复杂非凸约束优化难题与迭代动态多样进化算法

高维尚 邵诚

高维尚, 邵诚. 复杂非凸约束优化难题与迭代动态多样进化算法. 自动化学报, 2014, 40(11): 2469-2479. doi: 10.3724/SP.J.1004.2014.02469
引用本文: 高维尚, 邵诚. 复杂非凸约束优化难题与迭代动态多样进化算法. 自动化学报, 2014, 40(11): 2469-2479. doi: 10.3724/SP.J.1004.2014.02469
GAO Wei-Shang, SHAO Cheng. Iterative Dynamic Diversity Evolutionary Algorithm for Constrained Optimization. ACTA AUTOMATICA SINICA, 2014, 40(11): 2469-2479. doi: 10.3724/SP.J.1004.2014.02469
Citation: GAO Wei-Shang, SHAO Cheng. Iterative Dynamic Diversity Evolutionary Algorithm for Constrained Optimization. ACTA AUTOMATICA SINICA, 2014, 40(11): 2469-2479. doi: 10.3724/SP.J.1004.2014.02469

复杂非凸约束优化难题与迭代动态多样进化算法


DOI: 10.3724/SP.J.1004.2014.02469
详细信息
  • 基金项目:

    Supported by National Natural Science Foundation of China(61074020)

Iterative Dynamic Diversity Evolutionary Algorithm for Constrained Optimization

More Information
  • Fund Project:

    Supported by National Natural Science Foundation of China(61074020)

  • 摘要: 进化算法的迅速发展,为非凸约束优化问题的求解提供了有效途径,但目前常用优化算法还未能全面满足更为复杂的约束条件或目标分布对寻优方式灵活应变能力的特别需求.首先,本文研究发现,当优化问题在全局最优解的某一较小邻域内,依然分布有复杂的局部极值或可行域分布时,大多数进化算法中不灵活的探索与挖掘方式将会在寻优后期导致误收敛现象发生.其次,为解决这一难题,本文继续对问题特征与算法规则进行了深入探讨,并提出用于解决该类问题的迭代动态多样进化算法(IDDEA).该算法利用多智能体创建一种新型占优评估策略,并以此为基础设计出较优子区域的划分方式.本文所提子区域的划分,在充分发挥动态多样搜索进化方式的探索能力前提下迭代推进,逐步缩小寻优空间,进而使得寻优采样在收敛的同时,依然保持原有探索与挖掘的灵活权衡模式.再次,本文还提出一种最小惩罚函数,为IDDEA引入一种自适应惩罚机制,来动态调整不可行代理的适应度分配,从而有效避免了选择罚系数的难题.最后,IDDEA在若干工程优化设计问题中的成功应用表明,本文在合理的问题分析基础上,提供了更加有效的算法设计思路与成果.
  • [1] Deb K. An efficient constraint handling method for genetic algorithms. Computer Methods in Applied Mechanics and Engineering, 2000, 186(2-4): 311-338
    [2] Farmani R, Wright J A. Self-adaptive fitness formulation for constrained optimization. IEEE Transactions on Evolutionary Computation, 2003, 7(5): 445-455
    [3] Nema S, Goulermas J Y, Sparrow G, Helman P. A hybrid cooperative search algorithm for constrained optimization. Structural and Multidisciplinary Optimization, 2011, 43(1): 107-119
    [4] He S, Prempain E, Wu Q H. An improved particle swarm optimizer for mechanical design optimization problems. Engineering Optimization, 2004, 36(5): 585-605
    [5] Yang B, Chen Y P, Zhao Z L, Han Q Y. A master-slave particle swarm optimization algorithm for solving constrained optimization problems. In: Proceedings of the 6th World Congress on Intelligent Control and Automation. Dalian, China: IEEE, 2006. 3208-3212
    [6] Huang Xiao-Ling, Chai Tian-You. Particle swarm optimization for raw material purchasing plan in large scale ore dressing plant. Acta Automatica Sinica, 2009, 35(5): 632-636 (in Chinese)
    [7] Wang Chun-Sheng, Wu Min, Cao Wei-Hua, He Yong. Intelligent integrated modeling and synthetic optimization for blending process in lead-zinc sintering. Acta Automatica Sinica, 2009, 35(5): 605-612 (in Chinese)
    [8] Liu Gang, Lao Song-Yang, Yuan Can, Hou Lv-Lin, Tan Dong-Feng. OACRR-PSO algorithm for anti-ship missile path planning. Acta Automatica Sinica, 2012, 38(9): 1528-1537 (in Chinese)
    [9] Wu Q, Law R, Wu E, Lin J X. A hybrid-forecasting model reducing Gaussian noise based on the Gaussian support vector regression machine and chaotic particle swarm optimization. Information Sciences, 2013, 238: 96-110
    [10] Wu Q, Law R. Complex system fault diagnosis based on a fuzzy robust wavelet support vector classifier and an adaptive gaussian particle swarm optimization. Information Sciences, 2010, 180(23): 4514-4528
    [11] Vural R A, Yildirim T, Kadioglu T, Basargan A. Performance evaluation of evolutionary algorithms for optimal filter design. IEEE Transactions on Evolutionary Computation, 2012, 16(1): 135-147
    [12] Li X D, Yao X. Cooperatively coevolving particle swarms for large scale optimization. IEEE Transactions on Evolutionary Computation, 2012, 16(2): 210-224
    [13] Blackwell T. A study of collapse in bare bones particle swarm optimization. IEEE Transactions on Evolutionary Computation, 2012, 16(3): 354-372
    [14] Pehlivanoglu Y V. A new particle swarm optimization method enhanced with a periodic mutation strategy and neural networks. IEEE Transactions on Evolutionary Computation, 2013, 17(3): 436-452
    [15] Chen W N, Zhang J, Lin Y, Chen N, Zhan Z H, Chung H, Li Y, Shi Y H. Particle swarm optimization with an aging leader and challengers. IEEE Transactions on Evolutionary Computation, 2013, 17(2): 241-258
    [16] Naznin F, Sarker R, Essam D. Progressive alignment method using genetic algorithm for multiple sequence alignment. IEEE Transactions on Evolutionary Computation, 2012, 16(5): 615-631
    [17] Pan Feng, Zhou Qian, Li Wei-Xing, Gao Qi. Analysis of standard particle swarm optimization algorithm based on Markov chain. Acta Automatica Sinica, 2013, 39(4): 381-389 (in Chinese)
    [18] Liu Jian-Hua, Liu Guo-Mai, Yang Rong-Hua, Hu Wen-Yu. Analysis of interactivity and randomness in particle swarm optimization. Acta Automatica Sinica, 2012, 38(9): 1471-1484 (in Chinese)
    [19] Wang Y, Cai Z X. Combining multiobjective optimization with differential evolution to solve constrained optimization problems. IEEE Transactions on Evolutionary Computation, 2012, 16(1): 117-134
    [20] Wang Y, Cai Z X, Zhou Y R, Zeng W. An adaptive tradeoff model for constrained evolutionary optimization. IEEE Transactions on Evolutionary Computation, 2008, 12(1): 80-92
    [21] Cai Z X, Wang Y. A multiobjective optimization-based evolutionary algorithm for constrained optimization. IEEE Transactions on Evolutionary Computation, 2006, 10(6): 658-675
    [22] Krohling R A, dos Santos-Coelho L. Coevolutionary particle swarm optimization using Gaussian distribution for solving constrained optimization problems. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2006, 36(6): 1407-1416
    [23] Tessema B, Yen G G. An adaptive penalty formulation for constrained evolutionary optimization. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans, 2009, 39(3): 565-578
    [24] Daneshyari M, Yen G G. Constrained multiple-swarm particle swarm optimization within a cultural framework. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans, 2012, 42(2): 475-490
    [25] Venkatraman S, Yen G G. A generic framework for constrained optimization using genetic algorithms. IEEE Transactions on Evolutionary Computation, 2005, 9(4): 424-435
    [26] Wang Y, Jiao Y C, Li H. An evolutionary algorithm for solving nonlinear bilevel programming based on a new constraint-handling scheme. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, 2005, 35(2): 221-232
    [27] Grefenstette J J. Optimization of control parameters for genetic algorithms. IEEE Transactions on Systems, Man, and Cybernetics, 1986, 16(1): 122-128
    [28] Whitley D, Starkweather T, Bogart C. Genetic algorithms and neural networks: optimizing connections and connectivity. Parallel Computing, 1990, 14(3): 347-361
    [29] Weile D S, Michielssen E. Genetic algorithm optimization applied to electromagnetics: a review. IEEE Transactions on Antennas and Propagation, 1997, 45(3): 343-353
    [30] Kennedy J, Eberhart R. Particle swarm optimization. In: Proceedings of IEEE International Conference on Neural Networks. New York, USA: IEEE, 1995. 1942-1948
    [31] Eberhart R, Kennedy J. A new optimizer using particle swarm theory. In: Proceedings of the 6th International Symposium on Micro Machine and Human Science. Nagoya, USA: IEEE, 1995. 39-43
    [32] Settles M, Soule T. Breeding swarms: a GA/PSO hybrid. In: Proceedings of the 2005 Conference on Genetic and Evolutionary Computation. Washington, DC: ACM, 2005. 161-168
    [33] Robinson J, Sinton S, Rahmat-Samii Y. Particle swarm, genetic algorithm, and their hybrids: optimization of a profiled corrugated horn antenna. In: Proceedings of Antennas and Propagation Society International Symposium, 2002. New York, USA: IEEE, 2002. 314-317
    [34] Rahmat-Samii Y. Genetic algorithm (GA) and particle swarm optimization (PSO) in engineering electromagnetics. In: Proceedings of the 17th International Conference on Applied Electromagnetics and Communications, 2003. Dubrovnik, Croatia: IEEE, 2003. 1-5
    [35] Gao Wei-Shang, Shao Cheng, Gao Qin. Pseudo-collision in swarm optimization algorithm and solution: rain forest algorithm. Acta Physica Sinica, 2013, 62(19): 20-35 (in Chinese)
    [36] Himmelblau D M, Clark B J, Eichberg M. Applied Nonlinear Programming. New York: McGraw-Hill, 1972.
    [37] Runarsson T P, Yao X. Stochastic ranking for constrained evolutionary optimization. IEEE Transactions on Evolutionary Computation, 2000, 4(3): 284-294
    [38] Gen M, Cheng R. Genetic Algorithms and Engineering design. New York: John Wily and Sons, 1997.
    [39] Belegundu A D. A Study of Mathematical Programming Methods for Structural Optimization [Ph.D. dissertation], University of Iowa, Iowa, 1982.
    [40] Arora J S. Introduction to optimum design. New York: McGraw-Hill, 1989.
    [41] Coello C A C, Montes E M. Constraint-handling in genetic algorithms through the use of dominance-based tournament selection. Advanced Engineering Informatics, 2002, 16(3): 193-203
    [42] Sandgren E. Nonlinear integer and discrete programming in mechanical design optimization. Journal of Mechanical Design, 1990, 112(2): 223-229
    [43] Deb K. Geneas: a robust optimal design technique for mechanical component design. Evolutionary Algorithms in Engineering Applications. New York: Springer 1997. 497-514
    [44] Coello C A C, Montes E M. Use of dominance-based tournament selection to handle constraints in genetic algorithms. Intelligent Engineering Systems through Artificial Neural Networks (ANNIE2001), 2001, 11: 177-182
    [45] Ragsdell K M, Phillips D T. Optimal design of a class of welded structures using geometric programming. Journal of Manufacturing Science and Engineering, 1976, 98(3): 1021-1025
    [46] Ray T, Liew K M. Society and civilization: an optimization algorithm based on the simulation of social behavior. IEEE Transactions on Evolutionary Computation, 2003, 7(4): 386-396
  • [1] 孙长银, 穆朝絮. 多智能体深度强化学习的若干关键科学问题[J]. 自动化学报, 2020, 46(7): 1301-1312. doi: 10.16383/j.aas.c200159
    [2] 高开来, 丁进良. 蒸馏与换热协同的约束多目标在线操作优化方法[J]. 自动化学报, 2019, 45(9): 1679-1690. doi: 10.16383/j.aas.c180717
    [3] 陈美蓉, 郭一楠, 巩敦卫, 杨振. 一类新型动态多目标鲁棒进化优化方法[J]. 自动化学报, 2017, 43(11): 2014-2032. doi: 10.16383/j.aas.2017.c160300
    [4] 陈振兴, 严宣辉, 吴坤安, 白猛. 融合张角拥挤控制策略的高维多目标优化[J]. 自动化学报, 2015, 41(6): 1145-1158. doi: 10.16383/j.aas.2015.c140555
    [5] 李长生, 王玉振. 端口受控哈密顿多智能体系统的输出一致性协议设计[J]. 自动化学报, 2014, 40(3): 415-422. doi: 10.3724/SP.J.1004.2014.00415
    [6] 罗小元, 杨帆, 李绍宝, 关新平. 多智能体系统的最优持久编队生成策略[J]. 自动化学报, 2014, 40(7): 1311-1319. doi: 10.3724/SP.J.1004.2014.01311
    [7] 于坤杰, 王昕, 王振雷. 基于反馈的精英教学优化算法[J]. 自动化学报, 2014, 40(9): 1976-1983. doi: 10.3724/SP.J.1004.2014.01976
    [8] 李中奇, 杨辉, 张坤鹏, 付雅婷. 基于多智能体模型的动车组分布式预测控制[J]. 自动化学报, 2014, 40(11): 2625-2631. doi: 10.3724/SP.J.1004.2014.02625
    [9] 王大志, 刘士新, 郭希旺. 求解总拖期时间最小化流水车间调度问题的多智能体进化算法[J]. 自动化学报, 2014, 40(3): 548-555. doi: 10.3724/SP.J.1004.2014.00548
    [10] 曾莉, 胡广大. 含通信延时及输入延时的线性多智能体的一致性[J]. 自动化学报, 2013, 39(7): 1133-1140. doi: 10.3724/SP.J.1004.2013.01133
    [11] 罗小元, 邵士凯, 关新平, 赵渊洁. 多智能体最优持久编队动态生成与控制[J]. 自动化学报, 2013, 39(9): 1431-1438. doi: 10.3724/SP.J.1004.2013.01431
    [12] 余宏旺, 郑毓蕃. 多智能体系统在分布式采样控制下的动力学行为[J]. 自动化学报, 2012, 38(3): 357-365. doi: 10.3724/SP.J.1004.2012.00357
    [13] 严卫生, 李俊兵, 王银涛. 受损多智能体系统的信息一致性[J]. 自动化学报, 2012, 38(11): 1880-1884. doi: 10.3724/SP.J.1004.2012.01880
    [14] 康琦, 汪镭, 安静, 吴启迪. 基于近似动态规划的微粒群系统参数优化研究[J]. 自动化学报, 2010, 36(8): 1171-1181. doi: 10.3724/SP.J.1004.2010.01171
    [15] 熊伟清, 魏平. 二进制蚁群进化算法[J]. 自动化学报, 2007, 33(3): 259-264. doi: 10.1360/aas-007-0259
    [16] 黄海燕, 顾幸生, 刘漫丹. 求解约束优化问题的文化算法研究[J]. 自动化学报, 2007, 33(10): 1115-1120. doi: 10.1360/aas-007-1115
    [17] 王洪泊, 曾广平, 王宗杰, 涂序彦. 软件人群体智能自律协调模型研究及应用[J]. 自动化学报, 2007, 33(9): 924-930. doi: 10.1360/aas-007-0924
    [18] 郭锐, 吴敏, 彭军, 彭姣, 曹卫华. 一种新的多智能体Q学习算法[J]. 自动化学报, 2007, 33(4): 367-372. doi: 10.1360/aas-007-0367
    [19] 欧海涛, 张卫东, 许晓鸣. 基于一般和随机对策论框架下的多智能体学习[J]. 自动化学报, 2002, 28(3): 423-426.
    [20] 丁永生, 任立红, 邵世煌. 采用新的DNA进化算法自动设计Takagi-Sugeno模糊控制器[J]. 自动化学报, 2001, 27(4): 510-520.
  • 加载中
计量
  • 文章访问数:  992
  • HTML全文浏览量:  41
  • PDF下载量:  1092
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-06-17
  • 修回日期:  2013-11-26
  • 刊出日期:  2014-11-20

复杂非凸约束优化难题与迭代动态多样进化算法

doi: 10.3724/SP.J.1004.2014.02469
    基金项目:

    Supported by National Natural Science Foundation of China(61074020)

摘要: 进化算法的迅速发展,为非凸约束优化问题的求解提供了有效途径,但目前常用优化算法还未能全面满足更为复杂的约束条件或目标分布对寻优方式灵活应变能力的特别需求.首先,本文研究发现,当优化问题在全局最优解的某一较小邻域内,依然分布有复杂的局部极值或可行域分布时,大多数进化算法中不灵活的探索与挖掘方式将会在寻优后期导致误收敛现象发生.其次,为解决这一难题,本文继续对问题特征与算法规则进行了深入探讨,并提出用于解决该类问题的迭代动态多样进化算法(IDDEA).该算法利用多智能体创建一种新型占优评估策略,并以此为基础设计出较优子区域的划分方式.本文所提子区域的划分,在充分发挥动态多样搜索进化方式的探索能力前提下迭代推进,逐步缩小寻优空间,进而使得寻优采样在收敛的同时,依然保持原有探索与挖掘的灵活权衡模式.再次,本文还提出一种最小惩罚函数,为IDDEA引入一种自适应惩罚机制,来动态调整不可行代理的适应度分配,从而有效避免了选择罚系数的难题.最后,IDDEA在若干工程优化设计问题中的成功应用表明,本文在合理的问题分析基础上,提供了更加有效的算法设计思路与成果.

English Abstract

高维尚, 邵诚. 复杂非凸约束优化难题与迭代动态多样进化算法. 自动化学报, 2014, 40(11): 2469-2479. doi: 10.3724/SP.J.1004.2014.02469
引用本文: 高维尚, 邵诚. 复杂非凸约束优化难题与迭代动态多样进化算法. 自动化学报, 2014, 40(11): 2469-2479. doi: 10.3724/SP.J.1004.2014.02469
GAO Wei-Shang, SHAO Cheng. Iterative Dynamic Diversity Evolutionary Algorithm for Constrained Optimization. ACTA AUTOMATICA SINICA, 2014, 40(11): 2469-2479. doi: 10.3724/SP.J.1004.2014.02469
Citation: GAO Wei-Shang, SHAO Cheng. Iterative Dynamic Diversity Evolutionary Algorithm for Constrained Optimization. ACTA AUTOMATICA SINICA, 2014, 40(11): 2469-2479. doi: 10.3724/SP.J.1004.2014.02469
参考文献 (46)

目录

    /

    返回文章
    返回