2.793

2018影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于多尺度非局部约束的单幅图像超分辨率算法

潘宗序 禹晶 肖创柏 孙卫东

潘宗序, 禹晶, 肖创柏, 孙卫东. 基于多尺度非局部约束的单幅图像超分辨率算法. 自动化学报, 2014, 40(10): 2233-2244. doi: 10.3724/SP.J.1004.2014.02233
引用本文: 潘宗序, 禹晶, 肖创柏, 孙卫东. 基于多尺度非局部约束的单幅图像超分辨率算法. 自动化学报, 2014, 40(10): 2233-2244. doi: 10.3724/SP.J.1004.2014.02233
PAN Zong-Xu, YU Jing, XIAO Chuang-Bai, SUN Wei-Dong. Single-image Super-resolution Algorithm Based on Multi-scale Nonlocal Regularization. ACTA AUTOMATICA SINICA, 2014, 40(10): 2233-2244. doi: 10.3724/SP.J.1004.2014.02233
Citation: PAN Zong-Xu, YU Jing, XIAO Chuang-Bai, SUN Wei-Dong. Single-image Super-resolution Algorithm Based on Multi-scale Nonlocal Regularization. ACTA AUTOMATICA SINICA, 2014, 40(10): 2233-2244. doi: 10.3724/SP.J.1004.2014.02233

基于多尺度非局部约束的单幅图像超分辨率算法


DOI: 10.3724/SP.J.1004.2014.02233
详细信息
    作者简介:

    禹晶 清华大学电子工程系博士后.2011 年获得清华大学电子工程系博士学位. 主要研究方向为图像处理与模式识别. E-mail: yujing@tsinghua.edu.cn

  • 基金项目:

    国家自然科学基金 (61171117),国家科技支撑计划项目 (2012BAH31B01), 中国博士后科学基金(2013M540946), 北京市教育委员会科技计划重点项目 (KZ201310028035)资助

Single-image Super-resolution Algorithm Based on Multi-scale Nonlocal Regularization

More Information
  • Fund Project:

    Supported by National Natural Science Foundation of China (61171117), National Science and Technology Pillar Program of China (2012BAH31B01), the Postdoctoral Science Foundation of China (2013M540946) and Key Project of the Science and Technology Development Program of Beijing Education Committee of China (KZ201310028035)

  • 摘要: 多尺度结构自相似性是指图像中的大量物体具有相同尺度以及不同尺度相似结构的性质.本文提出了一种基于多尺度非局部约束的单幅图像超分辨率算法,结合多尺度非局部方法和多尺度字典学习方法将蕴含在图像多尺度自相似结构中的附加信息加入到重建图像中.多尺度非局部方法在图像金字塔的不同层中搜索相似图像块,并利用多尺度相似图像块间的关系建立非局部约束项,通过正则化约束获取多尺度自相似结构中的附加信息;多尺度字典学习方法将图像金字塔作为字典学习的样本,通过字典学习使样本中的多尺度相似图像块 在字典下具有稀疏表示形式,从而获取多尺度自相似结构中的附加信息.实验表明, 与ScSR、SISR、NLIBP、CSSS、ASDSAR和mSSIM等算法相比,本文的算法取得了更好的超分辨率重建效果.
  • [1] Sun Yan-Yue, He Xiao-Hai, Song Hai-Ying, Chen Wei-Long. A block-matching image registration algorithm for video super-resolution reconstruction. Acta Automatica Sinica, 2011, 37(1): 37-43(孙琰玥, 何小海, 宋海英, 陈为龙. 一种用于视频超分辨率重建的块匹配图像配准方法. 自动化学报, 2011, 37(1): 37-43)
    [2] An Yao-Zu, Lu Yao, Zhao Hong. An adaptive-regularized image super-resolution. Acta Automatica Sinica, 2012, 38(4): 601-608(安耀祖, 陆耀, 赵红. 一种自适应正则化的图像超分辨率算法. 自动化学报, 2012, 38(4): 601-608)
    [3] [3] Sen P, Darabi S. Compressive image super-resolution. In: Proceedings of 43rd Asilomar Conference on Signals, Systems and Computers. Pacific Grove, USA: IEEE, 2009. 1235-1242
    [4] [4] Yang J C, Wright J, Huang T S, Ma Y. Image super-resolution via sparse representation. IEEE Transactions on Image Processing, 2010, 19(11): 2861-2873
    [5] [5] Protter M, Elad M, Takeda H, Milanfar P. Generalizing the nonlocal-means to super-resolution reconstruction. IEEE Transactions on Image Processing, 2009, 18(1): 36-51
    [6] [6] Dong W S, Zhang L, Shi G M, Wu X L. Nonlocal back-projection for adaptive image enlargement. In: Proceedings of the 2009 IEEE International Conference on Image Processing. Cairo, Egypt: IEEE, 2009. 349-352
    [7] [7] Glasner D, Bagon S, Irani M. Super-resolution from a single image. In: Proceedings of the 12th International Conference on Computer Vision. Kyoto, Japan: IEEE, 2009. 349-356
    [8] [8] Dong W S, Zhang L, Shi G M, Wu X L. Image deblurring and super-resolution by adaptive sparse domain selection and adaptive regularization. IEEE Transactions on Image Processing, 2011, 20(7): 1838-1857
    [9] [9] Pan Z X, Yu J, Huang H J, Hu S X, Zhang A W, Ma H B, Sun W D. Super-resolution based on compressive sensing and structural self-similarity for remote sensing images. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(9): 4864-4876
    [10] Pan Zong-Xu, Yu Jing, Hu Shao-Xing, Sun Wei-Dong. Single image super resolution based on multi-scale structural self-similarity. Acta Automatica Sinica, 2014, 40(4): 594-603(潘宗序, 禹晶, 胡少兴, 孙卫东. 基于多尺度结构自相似性的单幅图像超分辨率算法. 自动化学报, 2014, 40(4): 594-603)
    [11] Engan K, Aase S O, Husoy J H. Method of optimal directions for frame design. In: Proceedings of the 1999 IEEE International Conference on Acoustics, Speech, and Signal Processing. Phoenix, AZ, USA: IEEE, 1999. 2443-2446
    [12] Aharon M, Elad M, Bruckstein A. K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation. IEEE Transactions on Signal Processing, 2006, 54(11): 4311-4322
    [13] Elad M, Aharon M. Image denoising via sparse and redundant representations over learned dictionaries. IEEE Transactions on Image Processing, 2006, 15(12): 3736-3745
    [14] Gribonval R, Nielsen M. Sparse representations in unions of bases. IEEE Transactions on Information Theory, 2003, 49(12): 3320-3325
    [15] Daubechies I, Defrise M, De Mol C. An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Communications on Pure and Applied Mathematics, 2004, 57(11): 1413-1457
    [16] Moorthy A K, Bovik A C. A two-step framework for constructing blind image quality indices. IEEE Signal Processing Letters, 2010, 17(5): 513-516
    [17] Marziliano P, Dufaux F, Winkler S, Ebrahimi T. A no-reference perceptual blur metric. In: Proceedings of the 2002 International Conference on Image Processing. Rochester, NY, USA: IEEE, 2002. III-57-III-60
    [18] Xu L, Jia J Y. Two-phase kernel estimation for robust motion deblurring. In: Proceedings of the 11th European Conference on Computer Vision. Heraklion, Crete, Greece: Springer, 2010. 157-170
  • [1] 郭俊锋, 李育亮. 基于学习字典的机器人图像稀疏表示方法[J]. 自动化学报, 2020, 46(4): 820-830. doi: 10.16383/j.aas.2018.c170352
    [2] 张毅锋, 刘袁, 蒋程, 程旭. 用于超分辨率重建的深度网络递进学习方法[J]. 自动化学报, 2020, 46(2): 274-282. doi: 10.16383/j.aas.2018.c180158
    [3] 胡长胜, 詹曙, 吴从中. 基于深度特征学习的图像超分辨率重建[J]. 自动化学报, 2017, 43(5): 814-821. doi: 10.16383/j.aas.2017.c150634
    [4] 常振春, 禹晶, 肖创柏, 孙卫东. 基于稀疏表示和结构自相似性的单幅图像盲解卷积算法[J]. 自动化学报, 2017, 43(11): 1908-1919. doi: 10.16383/j.aas.2017.c160357
    [5] 李滔, 何小海, 卿粼波, 滕奇志. 基于自适应块组割先验的噪声图像超分辨率重建[J]. 自动化学报, 2017, 43(5): 765-777. doi: 10.16383/j.aas.2017.c160268
    [6] 黄丹丹, 孙怡. 基于判别性局部联合稀疏模型的多任务跟踪[J]. 自动化学报, 2016, 42(3): 402-415. doi: 10.16383/j.aas.2016.c150416
    [7] 沈燕飞, 李锦涛, 朱珍民, 张勇东, 代锋. 基于非局部相似模型的压缩感知图像恢复算法[J]. 自动化学报, 2015, 41(2): 261-272. doi: 10.16383/j.aas.2015.c140210
    [8] 汤红忠, 张小刚, 陈华, 程炜, 唐美玲. 带边界条件约束的非相干字典学习方法及其稀疏表示[J]. 自动化学报, 2015, 41(2): 312-319. doi: 10.16383/j.aas.2015.c140183
    [9] 张东晓, 鲁林, 李翠华, 金泰松. 基于亚像素位移的超分辨率图像重建算法[J]. 自动化学报, 2014, 40(12): 2851-2861. doi: 10.3724/SP.J.1004.2014.02851
    [10] 李奕, 吴小俊. 香农熵加权稀疏表示图像融合方法研究[J]. 自动化学报, 2014, 40(8): 1819-1835. doi: 10.3724/SP.J.1004.2014.01819
    [11] 陈思宝, 赵令, 罗斌. 基于局部保持的核稀疏表示字典学习[J]. 自动化学报, 2014, 40(10): 2295-2305. doi: 10.3724/SP.J.1004.2014.02295
    [12] 潘宗序, 禹晶, 肖创柏, 孙卫东. 基于光谱相似性的高光谱图像超分辨率算法[J]. 自动化学报, 2014, 40(12): 2797-2807. doi: 10.3724/SP.J.1004.2014.02797
    [13] 潘宗序, 禹晶, 胡少兴, 孙卫东. 基于多尺度结构自相似性的单幅图像超分辨率算法[J]. 自动化学报, 2014, 40(4): 594-603. doi: 10.3724/SP.J.1004.2014.00594
    [14] 练秋生, 张钧芹, 陈书贞. 基于两级字典与分频带字典的图像超分辨率算法[J]. 自动化学报, 2013, 39(8): 1310-1320. doi: 10.3724/SP.J.1004.2013.01310
    [15] 安耀祖, 陆耀, 赵红. 一种自适应正则化的图像超分辨率算法[J]. 自动化学报, 2012, 38(4): 601-608. doi: 10.3724/SP.J.1004.2012.00601
    [16] 张地, 何家忠. 基于特征空间的人脸超分辨率重构[J]. 自动化学报, 2012, 38(7): 1145-1152. doi: 10.3724/SP.J.1004.2012.01145
    [17] 孙琰玥, 何小海, 宋海英, 陈为龙. 一种用于视频超分辨率重建的块匹配图像配准方法[J]. 自动化学报, 2011, 37(1): 37-43. doi: 10.3724/SP.J.1004.2011.00037
    [18] 孙玉宝, 费选, 韦志辉, 肖亮. 基于前向后向算子分裂的稀疏性正则化图像超分辨率算法[J]. 自动化学报, 2010, 36(9): 1232-1238. doi: 10.3724/SP.J.1004.2010.01232
    [19] 张冬明, 潘炜, 陈怀新. 基于MAP框架的时空联合自适应视频序列超分辨率重建[J]. 自动化学报, 2009, 35(5): 484-490. doi: 10.3724/SP.J.1004.2009.00484
    [20] 孙玉宝, 肖亮, 韦志辉, 邵文泽. 基于Gabor 感知多成份字典的图像稀疏表示算法研究[J]. 自动化学报, 2008, 34(11): 1379-1387. doi: 10.3724/SP.J.1004.2008.01379
  • 加载中
计量
  • 文章访问数:  987
  • HTML全文浏览量:  57
  • PDF下载量:  952
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-05-07
  • 修回日期:  2014-05-27
  • 刊出日期:  2014-10-20

基于多尺度非局部约束的单幅图像超分辨率算法

doi: 10.3724/SP.J.1004.2014.02233
    基金项目:

    国家自然科学基金 (61171117),国家科技支撑计划项目 (2012BAH31B01), 中国博士后科学基金(2013M540946), 北京市教育委员会科技计划重点项目 (KZ201310028035)资助

    作者简介:

    禹晶 清华大学电子工程系博士后.2011 年获得清华大学电子工程系博士学位. 主要研究方向为图像处理与模式识别. E-mail: yujing@tsinghua.edu.cn

摘要: 多尺度结构自相似性是指图像中的大量物体具有相同尺度以及不同尺度相似结构的性质.本文提出了一种基于多尺度非局部约束的单幅图像超分辨率算法,结合多尺度非局部方法和多尺度字典学习方法将蕴含在图像多尺度自相似结构中的附加信息加入到重建图像中.多尺度非局部方法在图像金字塔的不同层中搜索相似图像块,并利用多尺度相似图像块间的关系建立非局部约束项,通过正则化约束获取多尺度自相似结构中的附加信息;多尺度字典学习方法将图像金字塔作为字典学习的样本,通过字典学习使样本中的多尺度相似图像块 在字典下具有稀疏表示形式,从而获取多尺度自相似结构中的附加信息.实验表明, 与ScSR、SISR、NLIBP、CSSS、ASDSAR和mSSIM等算法相比,本文的算法取得了更好的超分辨率重建效果.

English Abstract

潘宗序, 禹晶, 肖创柏, 孙卫东. 基于多尺度非局部约束的单幅图像超分辨率算法. 自动化学报, 2014, 40(10): 2233-2244. doi: 10.3724/SP.J.1004.2014.02233
引用本文: 潘宗序, 禹晶, 肖创柏, 孙卫东. 基于多尺度非局部约束的单幅图像超分辨率算法. 自动化学报, 2014, 40(10): 2233-2244. doi: 10.3724/SP.J.1004.2014.02233
PAN Zong-Xu, YU Jing, XIAO Chuang-Bai, SUN Wei-Dong. Single-image Super-resolution Algorithm Based on Multi-scale Nonlocal Regularization. ACTA AUTOMATICA SINICA, 2014, 40(10): 2233-2244. doi: 10.3724/SP.J.1004.2014.02233
Citation: PAN Zong-Xu, YU Jing, XIAO Chuang-Bai, SUN Wei-Dong. Single-image Super-resolution Algorithm Based on Multi-scale Nonlocal Regularization. ACTA AUTOMATICA SINICA, 2014, 40(10): 2233-2244. doi: 10.3724/SP.J.1004.2014.02233
参考文献 (18)

目录

    /

    返回文章
    返回