[1]
|
Shen Xiao-Wei, Wang Fei-Yue, Cheng Chang-Jian, Liu Xi-Wei. Application of clustering analysisto team management. Acta Automatica Sinica, 2012, 38(4): 563-569(沈小伟, 王飞跃, 程长建, 刘希未. 聚类分析方法在企业班组管理中的应用. 自动化学报, 2012, 38(4): 563-569)
|
[2]
|
Zhou Lin, Ping Xi-Jian, Xu Sen, Zhang Tao. Cluster ensemble based on spectral clustering. Acta Automatica Sinica, 2012, 38(8): 1335-1342(周林, 平西建, 徐森, 张涛. 基于谱聚类的聚类集成算法. 自动化学报, 2012, 38(8): 1335-1342)
|
[3]
|
Peng Yu, Luo Qing-Hua, Wang Dan, Peng Xi-Yuan. WSN location method using interval data clustering. Acta Automatica Sinica, 2012, 38(7): 1190-1199(彭宇, 罗清华, 王丹, 彭喜元. 基于区间数聚类的无线传感器网络定位方法. 自动化学报, 2012, 38(7): 1190-1199)
|
[4]
|
[4] Taskar B, Segal E, Koller D. Probabilistic classification and clustering in relational data. In: Proceedings of the 17th International Joint Conference on Artificial Intelligence. San Francisco, USA: Morgan Kaufmann Publishers, 2001. 870-878
|
[5]
|
[5] Wang J D, Zeng H J, Chen Z, Lu H J, Li T, Ma W Y. ReCoM: reinforcement clustering of multi-type interrelated data objects. In: Proceeding of the 26th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. Toronto, Canada: ACM, 2003. 274-281
|
[6]
|
[6] Long B, Zhang Z F, Yu P S. A probabilistic framework for relational clustering. In: Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA: ACM, 2007. 470-479
|
[7]
|
[7] Sun Y Z, Han J W, Zhao P X, Yin Z J, Cheng H, Wu T Y. Rankclus: integrating clustering with ranking for heterogeneous information network analysis. In: Proceedings of the 12th International Conference on Extending Database Technology: Advances in Database Technology. New York: ACM, 2009. 565-576
|
[8]
|
[8] Li T, Anand S S. DIVA: a variance-based clustering approach for multi-type relational data. In: Proceedings of the 16th ACM Conference on Conference on Information and Knowledge Management. Lisboa, Portugal: ACM, 2007. 147-156
|
[9]
|
[9] Long B, Zhang Z F, Wu X Y, Yu P S. Spectral clustering for multi-type relational data. In: Proceedings of the 23rd International Conference on Marchine Learning. Pittsburgh, USA: ACM, 2006. 585-592
|
[10]
|
Yin X X, Han J W, Yu P S. CrossClus: user-guided multi-relational clustering. Data Mining and Knowledge Discovery, 2007, 15(3): 321-348
|
[11]
|
Gao Ying, Liu Da-You, Qi Hong, Liu He. Semi-supervised K-means clustering algorithm for multi-type relational data. Journal of Software, 2008, 19(11): 2814-2821(高滢, 刘大有, 齐红, 刘赫. 一种半监督K均值多关系数据聚类算法. 软件学报, 2008, 19(11): 2814-2821)
|
[12]
|
Lin Y R, Sun J M, Cao N, Liu S X. Contextour: contextual contour visual analysis on dynamic multi-relational clustering. In: Proceedings of the SIAM Conference on Data Mining. Columbus, USA: ASA, 2010. 418-429
|
[13]
|
Wang H, Huang H, Ding C. Simultaneous clustering of multi-type relational data via symmetric nonnegative matrix tri-factorization. In: Proceedings of the 20th ACM International Conference on Information and Knowledge Management. Glasgow, UK: ACM, 2011. 279-284
|
[14]
|
Wang H, Nie F P, Huang H, Ding C. Nonnegative matrix tri-factorization based high-order co-clustering and its fast implementation. In: Proceedings of the 11th IEEE International Conference on Data Mining. Vancouver, Canada: IEEE, 2011. 774-783
|
[15]
|
Liu Y, Shen C. Orthogonal nonnegative matrix factorization for multi-type relational clustering. International Journal of Computer and Information Technology, 2013, 2(2): 215-221
|
[16]
|
Kusiak A, Letsche T, Zakarian A. Data modelling with IDEF1x. International Journal of Computer Integrated Manufacturing, 1997, 10(6): 470-486
|
[17]
|
Ma Z M, Zhang W J, Ma W Y. Extending IDEF1X to model fuzzy data. Journal of Intelligent Manufacturing, 2002, 13(4): 295-307
|
[18]
|
Agrawal R, Gehrke J, Gunopulos D, Raghavan P. Automatic subspace clustering of high dimensional data for data mining applications. In: Proceeding of the 1998 ACM SIGMOD International Conference on Management of Data. New York, USA: ACM, 1998. 94-105
|
[19]
|
Zhao Y, Karypis G. Criterion Functions for Document Clustering: Experiment and Analysis, Technical Report TR 01-40, Department of Computer Science, University of Minnesota, USA, 2001
|