2.765

2022影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一类非齐次高阶非线性系统的连续反馈控制设计

孙丞 孙鹤旭 刁心薇

孙丞, 孙鹤旭, 刁心薇. 一类非齐次高阶非线性系统的连续反馈控制设计. 自动化学报, 2014, 40(1): 149-155. doi: 10.3724/SP.J.1004.2014.00149
引用本文: 孙丞, 孙鹤旭, 刁心薇. 一类非齐次高阶非线性系统的连续反馈控制设计. 自动化学报, 2014, 40(1): 149-155. doi: 10.3724/SP.J.1004.2014.00149
SUN Cheng, SUN He-Xu, DIAO Xin-Wei. Continuous Feedback Control Design for a Class of Non-homogeneous High-order Nonlinear Systems. ACTA AUTOMATICA SINICA, 2014, 40(1): 149-155. doi: 10.3724/SP.J.1004.2014.00149
Citation: SUN Cheng, SUN He-Xu, DIAO Xin-Wei. Continuous Feedback Control Design for a Class of Non-homogeneous High-order Nonlinear Systems. ACTA AUTOMATICA SINICA, 2014, 40(1): 149-155. doi: 10.3724/SP.J.1004.2014.00149

一类非齐次高阶非线性系统的连续反馈控制设计

doi: 10.3724/SP.J.1004.2014.00149
基金项目: 

国家自然科学基金(61203142);天津市自然科学基金(11JCYBJC06500)资助

详细信息
    作者简介:

    孙丞 河北工业大学控制科学与工程学院博士研究生. 主要研究方向为非线性控制. E-mail:sunchtz@hebut.edu.cn

Continuous Feedback Control Design for a Class of Non-homogeneous High-order Nonlinear Systems

Funds: 

Supported by National Natural Science Foundation of China (6120 3142) and Natural Science Foundation of Tianjin (11JCYBJC06500)

  • 摘要: 研究了一类非齐次的高阶非线性系统的连续状态反馈控制设计问题. 通过定义一列适当的辅助函数,放宽了对非线性项的约束条件. 利用传统的积分反推技术,并增加一个积分项的方法,得到了这类系统的稳定性,给出了控制器的设计方法,并通过一个例子验证了本文的理论结果.
  • [1] Krstić M, Kanellakopoulos I, Kokotović P V. Nonlinear and Adaptive Control Design. New York: John Wiley and Sons, 1995. 29-32
    [2] Liu Y G, Pan Z G, Shi S J. Output feedback control design for strict-feedback stochastic nonlinear systems under a risk-sensitive cost. IEEE Transactions on Automatic Control, 2003, 48(3): 509-513
    [3] Liu Y G, Zhang J F. Minimal-order observer and output-feedback stabilization control design of stochastic nonlinear systems. Science in China Series F Information Sciences, 2004, 47(4): 527-544
    [4] Sontag E D. Feedback stabilization of nonlinear systems. Robust Control of Linear Systems and Nonlinear Control. Boston: Birkhäuser, 1990. 61-81
    [5] Xie X J, Tian J. Adaptive state-feedback stabilization of high-order stochastic systems with nonlinear parameterization. Automatica, 2009, 45(1): 126-133
    [6] Sun Z Y, Liu Y G. Adaptive stabilisation for a large class of high-order uncertain non-linear systems. International Journal of Control, 2009, 82(7): 1275-1287
    [7] Sun Z Y, Liu Y G, Xie X J. Global stabilization for a class of high-order time-delay nonlinear systems. International Journal of Innovative Computing, Information and Control, 2011, 7(12): 7119-7130
    [8] Lin W, Qian C J. Adaptive control of nonlinearly parameterized systems: a nonsmooth feedback framework. IEEE Transactions on Automatic Control, 2002, 47(5): 757-774
    [9] Qian C J, Lin W. A continuous feedback approach to global strong stabilization of nonlinear systems. IEEE Transactions on Automatic Control, 2001, 46(7): 1061-1079
    [10] Sun Z Y, Liu Y G. Adaptive state-feedback stabilization for a class of high-order nonlinear uncertain systems. Automatica, 2007, 43(10): 1772-1783
    [11] Zhang J, Liu Y G. A new approach to adaptive control design without overparametrization for a class of uncertain nonlinear systems. Science China (Series E): Information Sciences, 2011, 54(7): 1419-1429
    [12] Sun Z, Liu Y. Adaptive practical output tracking control for high-order nonlinear uncertain systems. Acta Automatica Sinica, 2008, 34(8): 984-988
    [13] Sun Zong-Yao, Liu Yun-Gang. Stabilizing control design for a class of high-order nonlinear systems with unknown but identical control coefficients. Acta Automatica Sinica, 2007, 33(3): 331-334(孙宗耀, 刘允刚. 一类控制系数未知但等同高阶非线性系统的稳定控制设计. 自动化学报, 2007, 33(3): 331-334)
    [14] Sun Zong-Yao, Sun Wei, Liu Zhen-Guo. Adaptive control design of high-order nonlinear systems with unknown control coefficients and zero dynamics. Acta Automatica Sinica, 2012, 38(6): 1025-1032(孙宗耀, 孙伟, 刘振国. 有未知控制系数和零动态的高阶非线性系统的自适应控制设计. 自动化学报, 2012, 38(6): 1025-1032)
    [15] Kurzweil J. On the inversion of Lyapunov's second theorem on stability of motion. American Mathematical Society Translations, 1956, 24: 19-77
    [16] Qian C J, Lin W. Non-Lipschitz continuous stabilizers for nonlinear systems with uncontrollable unstable linearization. System and Control Letters, 2001, 42(3): 185-200
  • 加载中
计量
  • 文章访问数:  1413
  • HTML全文浏览量:  115
  • PDF下载量:  1028
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-07-20
  • 修回日期:  2013-02-22
  • 刊出日期:  2014-01-20

目录

    /

    返回文章
    返回