2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

广义Mamdani模糊系统依K-积分模的泛逼近及其实现过程

王贵君 李晓萍 隋晓琳

王贵君, 李晓萍, 隋晓琳. 广义Mamdani模糊系统依K-积分模的泛逼近及其实现过程. 自动化学报, 2014, 40(1): 143-148. doi: 10.3724/SP.J.1004.2014.00143
引用本文: 王贵君, 李晓萍, 隋晓琳. 广义Mamdani模糊系统依K-积分模的泛逼近及其实现过程. 自动化学报, 2014, 40(1): 143-148. doi: 10.3724/SP.J.1004.2014.00143
WANG Gui-Jun, LI Xiao-Ping, SUI Xiao-Lin. Universal Approximation and Its Realization of Generalized Mamdani Fuzzy System Based on K-integral Norms. ACTA AUTOMATICA SINICA, 2014, 40(1): 143-148. doi: 10.3724/SP.J.1004.2014.00143
Citation: WANG Gui-Jun, LI Xiao-Ping, SUI Xiao-Lin. Universal Approximation and Its Realization of Generalized Mamdani Fuzzy System Based on K-integral Norms. ACTA AUTOMATICA SINICA, 2014, 40(1): 143-148. doi: 10.3724/SP.J.1004.2014.00143

广义Mamdani模糊系统依K-积分模的泛逼近及其实现过程

doi: 10.3724/SP.J.1004.2014.00143
基金项目: 

国家自然科学基金(61374009)资助

详细信息
    作者简介:

    王贵君 天津师范大学数学科学学院教授. 1994 年获得东北师范大学数学系硕士学位. 主要研究方向为模糊测度与模糊积分,模糊神经网络,模糊系统分析. 本文通信作者. E-mail:tjwgj@126.com

Universal Approximation and Its Realization of Generalized Mamdani Fuzzy System Based on K-integral Norms

Funds: 

Supported by National Natural Science Foundation of China (61374009)

  • 摘要: 首先,通过引入拟减法算子给出K-积分模定义,并针对广义Mamdani模糊系统实施等距剖分其输入空间. 其次,应用分片线性函数(Piecewise linear function,PLF)的性质构造性地证明了广义Mamdani模糊系统在K-积分模意义下具有泛逼近性,从而将该模糊系统对连续函数空间的逼近能力扩展到一类可积函数类空间上. 最后,通过模拟实例给出该广义Mamdani模糊系统对给定可积函数的泛逼近及实现过程.
  • [1] Liu P Y, Li H X. Approximation of generalized fuzzy system to integrable function. Science in China (Series E), 2000, 43(6): 618-628
    [2] Liu P Y, Li H X. Analyses for Lp(μ)-norm approximation capability of generalized Mamdani fuzzy systems. Information Sciences, 2001, 138(1-4): 195-210
    [3] Zeng Ke, Zhang Nai-Rao, Xu Wen-Li. Sufficient condition for linear T-S fuzzy systems as universal approximators. Acta Automatica Sinica, 2001, 27(5): 606-612(曾珂, 张乃尧, 徐文立. 线性T-S模糊系统作为通用逼近器的充分条件. 自动化学报, 2001, 27(5): 606-612)
    [4] Tang Shao-Xian, Chen Jian-Er, Zhang Tai-Shan. Mamdani fuzzy system I/O relation representative and membership function optimization. Control Theory and Applications, 2005, 22(4): 520-526(唐少先, 陈建二, 张泰山. Mamdani模糊系统I/O关系的表示及隶属函数优化. 控制理论与应用, 2005, 22(4): 520-526)
    [5] Zhang Yu-Zhuo, Li Hong-Xing. Generalized hierarchical Mamdani fuzzy systems and their universal approximation. Control Theory and Application, 2006, 23(3): 449-454(张宇卓, 李洪兴. 广义递阶Mamdani模糊系统及其泛逼近性. 控制理论与应用, 2006, 23(3): 449-454)
    [6] Sun Fu-Chun, Yang Jin, Liu Hua-Ping. Preconditions for SISO Mamdani fuzzy systems to perform as function approximators. CAAI Transactions on Intelligent Systems, 2009, 4(4): 288-294(孙富春, 杨晋, 刘华平. SISO Mamdani模糊系统作为函数逼近器的必要条件. 智能系统学报, 2009, 4(4): 288-294)
    [7] Chen Gang. On approaching precisions of standard fuzzy systems with different basic functions. Acta Automatica Sinica, 2008, 34(7): 823-827(陈刚. 关于具有不同基函数的标准模糊系统逼近问题的研究. 自动化学报, 2008, 34(7): 823-827)
    [8] Li Hong-Xing, Yuan Xue-Hai, Wang Jia-Yin, Li Yu-Cheng. The normal numbers of the fuzzy systems and their classes. Science China Information Science, 2010, 53(11): 2215-2229(李洪兴, 袁学海, 王加银, 李宇成. Fuzzy系统的范数与Fuzzy系统的分类. 中国科学: 信息科学, 2010, 40(12): 1596-1610)
    [9] Yuan Xue-Hai, Li Hong-Xing, Sun Kai-Biao. Fuzzy systems and their approximation capability based on parameter singleton fuzzifier methods. Acta Electronica Sinica, 2011, 39(10): 2372-2377(袁学海, 李洪兴, 孙凯彪. 基于参数单点模糊化方法的模糊系统及其逼近能力. 电子学报, 2011, 39(10): 2372-2377)
    [10] Wang Gui-Jun, Li Xiao-Ping. Universal approximation of polygonal fuzzy neural networks in sense of K-integral norms. Science China Information Science, 2011, 54(11): 2307-2323(王贵君, 李晓萍. K-积分模意义下折线模糊神经网络的泛逼近性. 中国科学: 信息科学, 2012, 42(3): 362-378)
    [11] Zhao Fen-Xia, Li Hong-Xing. Approximation of regular fuzzy neural networks to Sugeno-integrable functions. Acta Mathematicae Applicatae Sinica, 2006, 29(1): 39-45(赵芬霞, 李洪兴. 正则模糊神经网络在Sugeno积分模意义下的泛逼近性. 应用数学学报, 2006, 29(1): 39-45)
    [12] Wang Gui-Jun, Li Dan. Capability of universal approximation of feedforward regular fuzzy neural networks in K-integral norm. Acta Mathematicae Applicatae Sinica, 2013, 36(1): 141-152(王贵君, 李丹. 前向正则模糊神经网络依K-积分模的泛逼近能力. 应用数学学报, 2013, 36(1): 141-152)
    [13] Wang Gui-Jun, Duan Chen-Xia. Generalized hierarchical hybrid fuzzy system and its universal approximation. Control Theory and Application, 2012, 29(5): 673-680(王贵君, 段晨霞. 广义分层混合模糊系统及其泛逼近性. 控制理论与应用, 2012, 29(5): 673-680)
    [14] Sugeno M, Murofushi T. Pseudo-additive measures and integrals. Journal of Mathematical Analysis and Applications, 1987, 122(1): 197-222
    [15] Wang Gui-Jun, Li Xiao-Ping. K-quasi-additive fuzzy number valued integral and its convergence. Advances in Mathematics, 2006, 35(1): 109-119(王贵君, 李晓萍. K-拟可加模糊数值积分及其收敛性. 数学进展, 2006, 35(1): 109-119)
    [16] Duan Chen-Xia, Wang Gui-Jun. Universal approximation of square pricewise linear functions in K-integral norms in fuzzy system. Journal of Tianjin Normal University (Natural Science Edition), 2012, 32(3): 13-16(段晨霞, 王贵君. 模糊系统中方形分片线性函数依K-积分模的泛逼近性. 天津师范大学学报(自然科学版), 2012, 32(3): 13-16)
  • 加载中
计量
  • 文章访问数:  2028
  • HTML全文浏览量:  98
  • PDF下载量:  1000
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-09-21
  • 修回日期:  2013-04-02
  • 刊出日期:  2014-01-20

目录

    /

    返回文章
    返回