[1]
|
Haralick R M, Shapiro L G. Computer and Robot Vision. Boston, MA: Addison-Wesley Longman Publishing Co., Inc. 1992
|
[2]
|
Jiang Li-Xing, Hou Jin. Image annotation using the ensemble learning. Acta Automatica Sinica, 2012, 38(8): 1257-1262
|
[3]
|
Chen Rong, Cao Yong-Feng, Sun Hong. Multi-class image classification with active learning and semi-supervised learning. Acta Automatica Sinica, 2011, 37(8): 954-962 (陈荣, 曹永锋, 孙洪. 基于主动学习和半监督学习的多类图像分类. 自动化学报, 2011, 37(8): 954-962)
|
[4]
|
Ting N. Dose Finding in Drug Development (Statistics for Biology and Health). New York: Springer, 2006
|
[5]
|
Wang Yao-Nan, Yuan Xiao-Fang. SVM approximate-based internal model control strategy. Acta Automatica Sinica, 2008, 34(2): 172-179
|
[6]
|
Bishop C M. Pattern Recognition and Machine Learning. New York: Springer-Verlag, 2006
|
[7]
|
Zhao Zhi-Gang, Lv Hui-Xian, Li Yu-Jing, Li Jing. A multi-classification SVM based on clustering idea. Journal of Qingdao Technological University, 2011, 32(1): 73-76 (赵志刚, 吕慧显, 李玉景, 李京. 一种基于聚类思想的SVM多类分类方法. 青岛理工大学学报, 2011, 32(1): 73-76)
|
[8]
|
Green P J, Yandell B S. Semi-parametric generalized linear models. In: Proceedings on the 2nd International GLIM Conference. New York: Springer-Verlag, 1985. 44-55
|
[9]
|
Zhu J, Hastie T. Kernel logistic regression and the import vector machine. Journal of Computational and Graphical Statistics, Cambridge, MA: MIT Press, 2001. 1081-1088
|
[10]
|
Hsu C W, Chang C C, Lin C J. TA Practical Guide to Support Vector Classification, Technical Report, Department of Computer Science and Information Engineering, National Taiwan University, Taipei, China, 2003
|
[11]
|
Mitchell T M. Machine Learning. New York: McGraw-Hill Inc., 1997
|
[12]
|
Keerthi S S, Duan B K, Shevade S K, Poo A N. A fast dual algorithm for kernel logistic regression. Machine Learning, 2005, 61(1-3): 151-165
|
[13]
|
Chapelle O, Vapnik V, Bousquet O, Mukherjee S. Choosing multiple parameters for support vector machines. Machine Learning, 2002, 46(1-3): 131-159
|
[14]
|
Gärtner T. A survey of kernels for structured data. ACM SIGKDD Explorations Newsletter, 2003, 5(1): 49-58
|
[15]
|
Maalouf M. Logistic regression in data analysis: an overview. International Journal of Data Analysis Techniques and Strategies, 2011, 3(3): 281-299
|
[16]
|
Wei Deng-Ping, Wang Ting, Wang Ji. A logistic regression model for semantic web service matchmaking. Science China Information Sciences, 2012, 55(7): 1715-1720
|
[17]
|
Zhang Z, Liu A, Lyles R H, Mukherjee B. Logistic regression analysis of biomarker data subject to pooling and dichotomization. Statistics in Medicine, 2012, 31(22): 2473-2484
|
[18]
|
Junek W N, Jones L W, Woods M T. Use of logistic regression for forecasting short-term volcanic activity. Algorithms, 2012, 5(4): 330-363
|
[19]
|
Dong J J, Tung Y H, Chen C C, Liao J J, Pan Y W. Logistic regression model for predicting the failure probability of a landslide dam. Engineering Geology, 2011, 117(1-2): 52-61
|
[20]
|
Das U, Maiti T, Pradhan V. Bias correction in logistic regression with missing categorical covariates. Journal of Statistical Planning and Inference, 2010, 140(9): 2478-2485
|
[21]
|
Bham G H, Javvadi B S, Manepalli U R R. Multinomial logistic regression model for single-vehicle and multivehicle collisions on urban US highways in Arkansas. Journal of Transportation Engineering, 2012, 138(6): 786-797
|
[22]
|
Santana R, Bielza C, Larrañaga P. Regularized logistic regression and multiobjective variable selection for classifying MEG data. Biological Cybernetics, 2012, 106(6-7): 389-405
|
[23]
|
Jaakkola T S, Haussler D. Probabilistic kernel regression models. In: Proceedings of the 1999 Conference on AI and Statistics. Key West, FL: Morgan Kaufmann, 1999. 1-9
|
[24]
|
Raina R, Shen Y R, Ng A Y, McCallum A. Classification with hybrid generative/discriminative models. In: Proceedings of the 2003 Advances in Neural Information Processing Systems. MIT Press, 2003. 280-289
|
[25]
|
Jaakkola T, Haussler D. Exploiting generative models in discriminative classifiers. In: Proceedings of the 1998 Advances in Neural Information Processing Systems 11. MIT Press, 1998. 487-493
|
[26]
|
Jaakkola T, Diekhans M, Haussler D. Using the Fisher kernel method to detect remote protein homologies. In: Proceedings of the 7th International Conference on Intelligent Systems for Molecular Biology. Heidelberg: AAAI Press, 1999. 149-158
|
[27]
|
Sun Q, Li R X, Luo D S, Wu X H. Text segmentation with LDA-based Fisher kernel. In: Proceedings of the 46th Annual Meeting of the Association for Computational Linguistics on Human Language Technologies. Stroudsburg, PA, USA: Association for Computational Linguistics, 2008. 269 -272
|
[28]
|
Kashima H, Tsuda K, Inokuchi A. Marginalized kernels between labeled graphs. In: Proceedings of the 20th International Conference on Machine Learning. Heidelberg: AAAI Press, 2003. 321-328
|
[29]
|
Tsuda K, Kawanabe M, Rätsch G, Sonnenburg S, MÜller K R. A new discriminative kernel from probabilistic models. Neural Computation, 2002, 14(10) 2397-2414
|
[30]
|
Tu L, Chen Y X. Stream data clustering based on grid density and attraction. ACM Transactions on Knowledge Discovery from Data, 2009, 3(3): 12:1-12:27
|
[31]
|
Chen Y X, Tu L. Density-based clustering for real-time stream data. In: Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD-07). New York, USA: ACM, 2007. 133-142
|