2.765

2022影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

关联量化系统参数稳定性与控制器设计

陈宁 沈晓瑜 桂卫华 郭宇骞

陈宁, 沈晓瑜, 桂卫华, 郭宇骞. 关联量化系统参数稳定性与控制器设计. 自动化学报, 2014, 40(1): 41-50. doi: 10.3724/SP.J.1004.2014.00041
引用本文: 陈宁, 沈晓瑜, 桂卫华, 郭宇骞. 关联量化系统参数稳定性与控制器设计. 自动化学报, 2014, 40(1): 41-50. doi: 10.3724/SP.J.1004.2014.00041
CHEN Ning, SHEN Xiao-Yu, GUI Wei-Hua, GUO Yu-Qian. Parametric Stability and Controller Design for Interconnected Systems with Quantization. ACTA AUTOMATICA SINICA, 2014, 40(1): 41-50. doi: 10.3724/SP.J.1004.2014.00041
Citation: CHEN Ning, SHEN Xiao-Yu, GUI Wei-Hua, GUO Yu-Qian. Parametric Stability and Controller Design for Interconnected Systems with Quantization. ACTA AUTOMATICA SINICA, 2014, 40(1): 41-50. doi: 10.3724/SP.J.1004.2014.00041

关联量化系统参数稳定性与控制器设计

doi: 10.3724/SP.J.1004.2014.00041
基金项目: 

国家自然科学基金(61074001,61074002);中央高校基本科研业务费专项资金项目(2010QZZD016);国家创新群体科学基金(61321003)资助

详细信息
    作者简介:

    陈宁 中南大学教授. 主要研究方向为大系统分散控制,鲁棒控制和数字信号处理. 本文通信作者.E-mail:ningchen@csu.edu.cn

Parametric Stability and Controller Design for Interconnected Systems with Quantization

Funds: 

Supported by National Natural Science Foundation of China (61074001, 61074002), the Fundamental Research Funds for the Central Universities (2010QZZD016), and Science Fund for Creative Research Groups of the National Natural Science Foundation of China (61321003)

  • 摘要: 量化问题广泛存在于计算机控制系统和数字通信的传输通道中. 本文研究一类非线性关联量化系统的参数稳定性及分散状态反馈控制器的设计问题. 每个控制器的输出经过对数量化器量化后输入到子系统中,其量化密度的大小会影响系统的稳定性. 首先,设计分散状态反馈控制器,使得无量化器存在时的关联闭环系统参数稳定,并确定参数稳定的区域;然后,对每个子系统的控制输入采用对数量化器进行量化,通过局部信息确定子系统中对数量化器量化密度的下界,使得整个闭环关联量化系统在参数稳定域内仍然保持稳定;最后,对给定量化密度,优化控制器使系统能容许最大的非线性. 仿真结果表明,本文所设计的分散量化控制器在参数稳定域内能够镇定关联大系统.
  • [1] Zecevic A I, Miljkovic D M. The effects of generation redispatch on Hopf bifurcations in electric power systems. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 2002, 49(8): 1180-1186
    [2] Ikeda M, Ohta Y, Śiljak D D. Parametric stability. New Trends in Systems Theory Boston: Birkhauser, 1991
    [3] Ohta Y, Śiljak D D. Parametric quadratic stabilizability of uncertain nonlinear systems. System and Control Letters, 1994, 22(6): 437-444
    [4] Wada T, Ikeda M, Ohta Y, Siljak D D. Parametric absolute stability of Lur'e systems. IEEE Transactions on Automatic Control, 1998, 43(11): 1649-1653
    [5] Wada T, Ikeda M, Ohta Y, Śiljak D D. Parametric absolute stability of multivariable Lur'e systems. Automatica, 2000, 36(9): 1365-1372
    [6] Chen Ning, Gui Wei-Hua, Liu Bi-Yu. Parametric absolute stability of interconnected Lurie control systems. Acta Automatica Sinica, 2007, 33(12): 1283-1289 (陈宁, 桂卫华, 刘碧玉. 关联Lurie控制大系统的参数绝对稳定性. 自动化学报, 2007, 33(12): 1283-1289)
    [7] Chen N, Liu Y T, Gui W H. Parametric absolute stabilization of lurie time-delay systems with polytopic uncertainty based on state feedback. In: Proceedings of the 8th Asian Control Conference (ASCC). Kaohsiung: IEEE, 2011. 1328-1333
    [8] Sundarapandian V. New results on the parametric stability of nonlinear systems. Mathematical and Computer Modelling, 2006, 43(1-2): 9-15
    [9] Ishii H, Francis B A. Limited Data Rate in Control Systems with Networks. Berlin: Springer, 2002
    [10] Liberzon D. Hybrid feedback stabilization of systems with quantized signals. Automatica, 2003, 39(9): 1543-1554
    [11] Elia N, Mitter S K. Stabilization of linear systems with limited information. IEEE Transactions on Automatic Control, 2001, 46(9): 1384-1400
    [12] Fu M Y, Xie L H. The sector bound approach to quantized feedback control. IEEE Transactions on Automatic Control, 2005, 50(11): 1698-1711
    [13] Gao H J, Chen T W. A new approach to quantized feedback control systems. Automatica, 2008, 44(2): 534-542
    [14] Che W W, Yang G H. Quantized dynamic output feedback H∞ control for discrete-time systems with quantizer ranges consideration. Acta Automatica Sinica, 2008, 34(6): 652-658
    [15] Zhou B, Duan G R, Lam J. On the absolute stability approach to quantized feedback control. Automatica, 2010, 46(2): 337-346
    [16] Liu T F, Jiang Z P, Hill D J. A sector bound approach to feedback control of nonlinear systems with state quantization. Automatica, 2012, 48(1): 145-152
    [17] Ortega J M, Rheinboldt W C. Iterative Solution of Nonlinear Equations in Several Variables. New York: Academic, 1970
    [18] Chen N, Ikeda M, Gui W H. Design of robust H∞ control for interconnected systems: a homotopy method. International Journal of Control, Automation, and Systems, 2005, 3(2): 143-151
  • 加载中
计量
  • 文章访问数:  1758
  • HTML全文浏览量:  104
  • PDF下载量:  915
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-07-18
  • 修回日期:  2012-12-19
  • 刊出日期:  2014-01-20

目录

    /

    返回文章
    返回