[1]
|
Larson R. Optimum quantization in dynamic systems. IEEE Transactions on Automatic Control, 1967, 12(2): 162-168
|
[2]
|
Curry R E. Separation theorem for nonlinear measurements. IEEE Transactions on Automatic Control, 1969, 14(5): 561-564
|
[3]
|
Lunze J. Qualitative modelling of linear dynamical systems with quantized state measurements. Automatica, 1994, 30(3): 417-431
|
[4]
|
Baillieul J. Feedback designs for controlling device arrays with communication channel bandwidth constraints. In: Proceedings of the 2009 ARO Workshop on Smart Structures. Boston, MA: Pennsylvania State University, 1999. 1-7 (请核对页码信息)
|
[5]
|
Wong W S, Brockett R W. Systems with finite communication bandwidth constraints. II: Stabilization with limited information feedback. IEEE Transactions on Automatic Control, 1999, 44(5): 1049-1053
|
[6]
|
Nair G N, Evans R J. Stabilization with data-rate-limited feedback: tightest attainable bounds. Systems and Control Letters, 2000, 41(1): 49-56
|
[7]
|
Hespanha J, Ortega A, Vasudevan L. Towards the control of linear systems with minimum bit-rate. In: Proceedings of the 15th International Symposium on Mathematical Theory of Networks and Systems. South Bend, Indiana: University of Notre Dame, 2002. 1-15 (请核对页码信息)
|
[8]
|
Nair G N, Evans R J. Exponential stabilisability of finite-dimensional linear systems with limited data rates. Automatica, 2003, 39(4): 585-593
|
[9]
|
Tatikonda S, Mitter S K. Control under communication constraints. IEEE Transactions on Automatic Control, 2004, 49(7): 1056-1068
|
[10]
|
Elia N, Mitter S K. Stabilization of linear systems with limited information. IEEE Transactions on Automatic Control, 2001, 46(9): 1384-1400
|
[11]
|
Fu M Y, Xie L H. The sector bound approach to quantized feedback control. IEEE Transactions on Automatic Control, 2005, 50(11): 1698-1711
|
[12]
|
Ishii H A, Francis B. Quadratic stabilization of sampled-data systems with quantization. Automatica, 2003, 39(10): 1793-1800
|
[13]
|
Ishii H, Baćsar T, Tempo R. Randomized algorithms for quadratic stability of quantized sampled-data systems. Automatica, 2004, 40(5): 839-846
|
[14]
|
Coutinho D F, Fu M Y, De Souza C E. Input and output quantized feedback linear systems. IEEE Transactions on Automatic Control, 2010, 55(3): 761-766
|
[15]
|
Phat V N, Jiang J M, Savkin A V, Petersen I R. Robust stabilization of linear uncertain discrete-time systems via a limited capacity communication channel. Systems and Control Letters, 2004, 53(5): 347-360
|
[16]
|
Li K Y, Baillieul J. Robust quantization for digital finite communication bandwidth (DFCB) control. IEEE Transactions on Automatic Control, 2004, 49(9): 1573-1584
|
[17]
|
Nair G N, Fagnani F, Zampieri S, Evans R J. Feedback control under data rate constraints: an overview. Proceedings of the IEEE, 2007, 95(1): 108-137
|
[18]
|
Delchamps D F. Stabilizing a linear system with quantized state feedback. IEEE Transactions on Automatic Control, 1990, 35(8): 916-924
|
[19]
|
Petersen I R, Savkin A V. Multi-rate stabilization of multivariable discrete-time linear systems via a limited capacity communication channel. In: Proceedings of the 40th IEEE Conference on Decision and Control. Orlando, FL: IEEE, 2001. 304-309
|
[20]
|
Brockett R W, Liberzon D. Quantized feedback stabilization of linear systems. IEEE Transactions on Automatic Control, 2000, 45(7): 1279-1289
|
[21]
|
Liberzon D. On stabilization of linear systems with limited information. IEEE Transactions on Automatic Control, 2003, 48(2): 304-307
|
[22]
|
Ling Q, Lemmon M D. Stability of quantized control systems under dynamic bit assignment. IEEE Transactions on Automatic Control, 2005, 50(5): 734-740
|
[23]
|
Savkin A V. Analysis and synthesis of networked control systems: topological entropy, observability, robustness and optimal control. Automatica, 2006, 42(1): 51-62
|
[24]
|
Nair G N, Huang M, Evans R J. Optimal infinite horizon control under a low data rate. In: Proceedings of the 14th IFAC Symposium on System Identification. Newcastle, Australia: IFAC, 2006. 1115-1120
|
[25]
|
Liberzon D, Nesic D. Input-to-state stabilization of linear systems with quantized state measurements. IEEE Transactions on Automatic Control, 2007, 52(5): 767-781
|
[26]
|
Fu M Y, Xie L H. Finite-level quantized feedback control for linear systems. IEEE Transactions on Automatic Control, 2009, 54(5): 1165-1170
|
[27]
|
Sharon Y, Liberzon D. Input to state stabilizing controller for systems with coarse quantization. IEEE Transactions on Automatic Control, 2012, 57(4): 830-844
|
[28]
|
Sontag E D. Smooth stabilization implies coprime factorization. IEEE Transactions on Automatic Control, 1989, 34(4): 435-443
|
[29]
|
Sontag E D. Input to state stability: basic concepts and results. Nonlinear and Optimal Control Theory. Berlin: Springer-Verlag, 2007. 163-220
|
[30]
|
Sontag E D. Comments on integral variants of ISS. Systems and Control Letters, 1998, 34(1-2): 93-100
|
[31]
|
Sontag E D, Wang Y. New characterizations of input-to-state stability. IEEE Transactions on Automatic Control, 1996, 41(9): 1283-1294
|
[32]
|
Martins N C, Dahleh M A. Fundamental limitations of performance in the presence of finite capacity feedback. In: Proceedings of the 2005 American Control Conference. Portland, OR, USA: IEEE, 2005. 79-86
|
[33]
|
Nair G N, Evans R J. Stabilizability of stochastic linear systems with finite feedback data rates. SIAM Journal on Control and Optimization, 2004, 43(2): 413-436
|
[34]
|
Matveev A S, Savkin A V. The problem of LQG optimal control via a limited capacity communication channel. Systems and Control Letters, 2004, 53(1): 51-64
|
[35]
|
Tatikonda S, Sahai A, Mitter S K. Stochastic linear control over a communication channel. IEEE Transactions on Automatic Control, 2004, 49(9): 1549-1561
|
[36]
|
Fu M Y. Lack of separation principle for quantized linear quadratic gaussian control. IEEE Transactions on Automatic Control, 2012, 57(9): 2385-2390
|
[37]
|
Bicchi A, Marigo A, Piccoli B. On the reachability of quantized control systems. IEEE Transactions on Automatic Control, 2002, 47(4): 546-563
|
[38]
|
De Persis C, Isidori A. Stabilizability by state feedback implies stabilizability by encoded state feedback. Systems and Control Letters, 2004, 53(3-4): 249-258
|
[39]
|
De Persis C. n-bit stabilization of n-dimensional nonlinear systems in feedforward form. IEEE Transactions on Automatic Control, 2005, 50(3): 299-311
|
[40]
|
Liberzon D, Hespanha J P. Stabilization of nonlinear systems with limited information feedback. IEEE Transactions on Automatic Control, 2005, 50(6): 910-915
|
[41]
|
Liu J L, Elia N. Quantized feedback stabilization of non-linear affine systems. International Journal of Control, 2004, 77(3): 239-249
|
[42]
|
Nair G N, Evans R J, Mareels I M Y, Moran W. Topological feedback entropy and nonlinear stabilization. IEEE Transactions on Automatic Control, 2004, 49(9): 1585-1597
|
[43]
|
Ceragioli F, De Persis C. Discontinuous stabilization of nonlinear systems: quantized and switching controls. Systems and Control Letters, 2007, 56(7-8): 461-473
|
[44]
|
Liberzon D. Hybrid feedback stabilization of systems with quantized signals. Automatica, 2003, 39(9): 1543-1554
|
[45]
|
Liberzon D. Observer-based quantized output feedback control of nonlinear systems. In: Proceedings of the 17th IFAC World Congress. Seoul, Korea: IFAC, 2008. 8039-8043
|
[46]
|
Shim H, Kim J S, Liberzon D. Quasi-ISS reduced-order observers and quantized output feedback. In: Proceedings of the 48th IEEE Conference on Decision and Control. Shanghai, China: IEEE, 2009. 6680-6685
|
[47]
|
Sontag E D. Clocks and insensitivity to small measurement errors. ESAIM: Control, Optimisation and Calculus of Variations, 1999, 4(1): 537-557
|
[48]
|
Freeman R A. Global internal stabilizability does not imply global external stabilizability for small sensor disturbances. IEEE Transactions on Automatic Control, 1995, 40(12): 2119-2122
|
[49]
|
Jiang Z P, Mareels I M Y, Hill D J. Robust control of uncertain nonlinear systems via measurement feedback. IEEE Transactions on Automatic Control, 1999, 44(4): 807-812
|
[50]
|
Jiang Z P, Mareels I M Y. A small-gain control method for nonlinear cascaded systems with dynamic uncertainties. IEEE Transactions on Automatic Control, 1997, 42(3): 292-308
|
[51]
|
Freeman R A, Kokotovic P V. Robust Nonlinear Control Design: State-Space and Lyapunov Techniques. Boston: Birkhäuser, 1996
|
[52]
|
Sontag E D. Further facts about input to state stabilization. IEEE Transactions on Automatic Control, 1990, 35(4): 473-476
|
[53]
|
Ledyaev Y S, Sontag E D. A Lyapunov characterization of robust stabilization. Nonlinear Analysis: Theory, Methods and Applications, 1999, 37(7): 813-840
|
[54]
|
Freeman R A, Kokotovic P V. Global robustness of nonlinear systems to state measurement disturbances. In: Proceedings of the 32nd IEEE Conference on Decision and Control. San Antonio, TX: IEEE, 1993. 1507-1512
|
[55]
|
Krstic M, Kanellakopoulos I, Kokotovic P V. Nonlinear and Adaptive Control Design. New York: John Wiley and Sons, 1995
|
[56]
|
Jiang Z P, Teel A R, Praly L. Small-gain theorem for ISS systems and applications. Mathematics of Control, Signals and Systems, 1994, 7(2): 95-120
|
[57]
|
Jiang Z P, Mareels I M Y, Wang Y. A Lyapunov formulation of the nonlinear small-gain theorem for interconnected ISS systems. Automatica, 1996, 32(8): 1211-1215
|
[58]
|
Jiang Z P. A combined backstepping and small-gain approach to adaptive output feedback control. Automatica, 1999, 35(6): 1131-1139
|
[59]
|
Jiang Z P. Global output feedback control with disturbance attenuation for minimum-phase nonlinear systems. Systems and Control Letters, 2000, 39(3): 155-164
|
[60]
|
Jiang Z P, Arcak M. Robust global stabilization with ignored input dynamics: an input-to-state stability (ISS) small-gain approach. IEEE Transactions on Automatic Control, 2001, 46(9): 1411-1415
|
[61]
|
Karafyllis I, Jiang Z P. Necessary and sufficient Lyapunov-like conditions for robust nonlinear stabilization. ESAIM: Control, Optimisation and Calculus of Variations, 2009, 16(4): 887-928
|
[62]
|
Jiang Z P, Wang Y. A generalization of the nonlinear small-gain theorem for large-scale complex systems. In: Proceedings of the 7th World Congress on Intelligent Control and Automation. Chongqing, China: IEEE, 2008. 1188-1193
|
[63]
|
Liu T F, Hill D J, Jiang Z P. Lyapunov formulation of ISS cyclic-small-gain in continuous-time dynamical networks. Automatica, 2011, 47(9): 2088-2093
|
[64]
|
Liu T F, Jiang Z P, Hill D J. Quantized output-feedback control of nonlinear systems: a cyclic-small-gain approach. In: Proceedings of the 30th Chinese Control Conference. Yantai, China: IEEE, 2011. 487-492
|
[65]
|
Liu T F, Jiang Z P, Hill D J. A sector bound approach to feedback control of nonlinear systems with state quantization. Automatica, 2012, 48(1): 145-152
|
[66]
|
Liu T F, Jiang Z P, Hill D J. Quantized stabilization of strict-feedback nonlinear systems based on ISS cyclic-small-gain theorem. Mathematics of Control, Signals, and Systems, 2012, 24(1-2): 75-110
|
[67]
|
Liu T F, Jiang Z P, Hill D J. Small-gain based output-feedback controller design for a class of nonlinear systems with actuator dynamic quantization. IEEE Transactions on Automatic Control, 2012, 57(5): 1326-1332
|
[68]
|
Filippov A F. Differential Equations with Discontinuous Righthand Sides. Boston: Kluwer Academic Publishers, 1988
|
[69]
|
Heemels W P M H, Weiland S. Input-to-state stability and interconnections of discontinuous dynamical systems. Automatica, 2008, 44(12): 3079-3086
|
[70]
|
De Persis C. Robust stabilization of nonlinear systems by quantized and ternary control. Systems and Control Letters, 2009, 58(8): 602-608
|
[71]
|
Hahn W. Stability of Motion. Berlin: Springer-Verlag, 1967
|
[72]
|
Khalil H K. Nonlinear Systems (3rd edition). New Jersey: Prentice-Hall, 2002
|
[73]
|
Sontag E D, Wang Y. On characterizations of the input-to-state stability property. Systems and Control Letters, 1995, 24(5): 351-359
|
[74]
|
Praly L, Wang Y. Stabilization in spite of matched unmodeled dynamics and an equivalent definition of input-to-state stability. Mathematics of Control, Signals and Systems, 1996, 9(1): 1-33
|
[75]
|
Jiang Z P, Repperger D W, Hill D J. Decentralized nonlinear output-feedback stabilization with disturbance attenuation. IEEE Transactions on Automatic Control, 2001, 46(10): 1623-1629
|
[76]
|
Karafyllis I, Jiang Z P. Stability and Stabilization of Nonlinear Systems. London: Springer, 2011
|
[77]
|
Karafyllis I, Jiang Z P. A small-gain theorem for a wide class of feedback systems with control applications. SIAM Journal on Control and Optimization, 2007, 46(4): 1483-1517
|
[78]
|
Liberzon D. Switching in Systems and Control. Boston: Birkhäuser, 2003
|
[79]
|
Hespanha J P, Liberzon D, Angeli D, Sontag E D. Nonlinear norm-observability notions and stability of switched systems. IEEE Transactions on Automatic Control, 2005, 50(2): 154-168
|
[80]
|
Isidori A. Nonlinear Control Systems (3rd edition). London: Springer, 1995
|
[81]
|
Sontag E D. Mathematical Control Theory: Deterministic Finite Dimensional Systems (2nd edition). New York: Springer, 1998
|
[82]
|
Coron J M. Control and Nonlinearity. Providence: American Mathematical Society, 2009
|
[83]
|
Huang J. Nonlinear Output Regulation: Theory and Applications. Philadelphia: SIAM, 2004
|
[84]
|
Byrnes C I, Delli P F, Isidori A. Output Regulation of Uncertain Nonlinear Systems. Boston: Birkhäuser, 1997
|
[85]
|
Siljak D D. Decentralized Control of Complex Systems. Boston: Academic Press, 1991
|
[86]
|
Jiang Z P. Decentralized disturbance attenuating output-feedback trackers for large-scale nonlinear systems. Automatica, 2002, 38(8): 1407-1415
|
[87]
|
Liu T F, Jiang Z P, Hill D J. Decentralized output-feedback control of large-scale nonlinear systems with sensor noise. Automatica, 2012, 48(10): 2560-2568
|
[88]
|
Karafyllis I, Jiang Z P. A vector small-gain theorem for general non-linear control systems. IMA Journal of Mathematical Control and Information, 2011, 28(3): 309-344
|
[89]
|
Liu T F, Jiang Z P, Hill D J. Lyapunov formulation of the ISS cyclic-small-gain theorem for hybrid dynamical networks. Nonlinear Analysis: Hybrid Systems, 2012, 6(4): 988-1001
|
[90]
|
Hayakawa T, Ishii H, Tsumura K. Adaptive quantized control for linear uncertain discrete-time systems. Automatica, 2009, 45(3): 692-700
|
[91]
|
Hayakawa T, Ishii H, Tsumura K. Adaptive quantized control for nonlinear uncertain systems. Systems and Control Letters, 2009, 58(9): 625-632
|
[92]
|
Teel A R. Connections between Razumikhin-type theorems and the ISS nonlinear small gain theorem. IEEE Transactions on Automatic Control, 1998, 43(7): 960-964
|