2.765

2022影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

量化非线性控制——综述

姜钟平 刘腾飞

姜钟平, 刘腾飞. 量化非线性控制——综述. 自动化学报, 2013, 39(11): 1820-1830. doi: 10.3724/SP.J.1004.2013.01820
引用本文: 姜钟平, 刘腾飞. 量化非线性控制——综述. 自动化学报, 2013, 39(11): 1820-1830. doi: 10.3724/SP.J.1004.2013.01820
JIANG Zhong-Ping, LIU Teng-Fei. Quantized Nonlinear Control——A Survey. ACTA AUTOMATICA SINICA, 2013, 39(11): 1820-1830. doi: 10.3724/SP.J.1004.2013.01820
Citation: JIANG Zhong-Ping, LIU Teng-Fei. Quantized Nonlinear Control——A Survey. ACTA AUTOMATICA SINICA, 2013, 39(11): 1820-1830. doi: 10.3724/SP.J.1004.2013.01820

量化非线性控制——综述

doi: 10.3724/SP.J.1004.2013.01820
基金项目: 

Supported by National Science Foundation of USA (DMS-0906659, ECCS-1230040)

Quantized Nonlinear Control——A Survey

Funds: 

Supported by National Science Foundation of USA (DMS-0906659, ECCS-1230040)

More Information
    Corresponding author: JIANG Zhong-Ping
  • 摘要: 量化控制系统设计通过将控制与通讯相结合来解决大量运用信息技术的现代工程系统的相关控制问题. 本文首先回顾近年来线性及非线性系统量化控制的结果. 其中, 非线性系统量化控制的发展尚处于初级阶段. 高维、量化、非线性及不确定性的共存导致量化非线性控制问题极具挑战性, 需要全新的思想和技术来解决. 本文重点回顾基于输入状态稳定性(ISS)及其回路小增益定理(Cyclic-small-gain theorem)的量化非线性控制设计方法, 同时列出该领域一些尚未解决的问题.
  • [1] Larson R. Optimum quantization in dynamic systems. IEEE Transactions on Automatic Control, 1967, 12(2): 162-168
    [2] Curry R E. Separation theorem for nonlinear measurements. IEEE Transactions on Automatic Control, 1969, 14(5): 561-564
    [3] Lunze J. Qualitative modelling of linear dynamical systems with quantized state measurements. Automatica, 1994, 30(3): 417-431
    [4] Baillieul J. Feedback designs for controlling device arrays with communication channel bandwidth constraints. In: Proceedings of the 2009 ARO Workshop on Smart Structures. Boston, MA: Pennsylvania State University, 1999. 1-7 (请核对页码信息)
    [5] Wong W S, Brockett R W. Systems with finite communication bandwidth constraints. II: Stabilization with limited information feedback. IEEE Transactions on Automatic Control, 1999, 44(5): 1049-1053
    [6] Nair G N, Evans R J. Stabilization with data-rate-limited feedback: tightest attainable bounds. Systems and Control Letters, 2000, 41(1): 49-56
    [7] Hespanha J, Ortega A, Vasudevan L. Towards the control of linear systems with minimum bit-rate. In: Proceedings of the 15th International Symposium on Mathematical Theory of Networks and Systems. South Bend, Indiana: University of Notre Dame, 2002. 1-15 (请核对页码信息)
    [8] Nair G N, Evans R J. Exponential stabilisability of finite-dimensional linear systems with limited data rates. Automatica, 2003, 39(4): 585-593
    [9] Tatikonda S, Mitter S K. Control under communication constraints. IEEE Transactions on Automatic Control, 2004, 49(7): 1056-1068
    [10] Elia N, Mitter S K. Stabilization of linear systems with limited information. IEEE Transactions on Automatic Control, 2001, 46(9): 1384-1400
    [11] Fu M Y, Xie L H. The sector bound approach to quantized feedback control. IEEE Transactions on Automatic Control, 2005, 50(11): 1698-1711
    [12] Ishii H A, Francis B. Quadratic stabilization of sampled-data systems with quantization. Automatica, 2003, 39(10): 1793-1800
    [13] Ishii H, Baćsar T, Tempo R. Randomized algorithms for quadratic stability of quantized sampled-data systems. Automatica, 2004, 40(5): 839-846
    [14] Coutinho D F, Fu M Y, De Souza C E. Input and output quantized feedback linear systems. IEEE Transactions on Automatic Control, 2010, 55(3): 761-766
    [15] Phat V N, Jiang J M, Savkin A V, Petersen I R. Robust stabilization of linear uncertain discrete-time systems via a limited capacity communication channel. Systems and Control Letters, 2004, 53(5): 347-360
    [16] Li K Y, Baillieul J. Robust quantization for digital finite communication bandwidth (DFCB) control. IEEE Transactions on Automatic Control, 2004, 49(9): 1573-1584
    [17] Nair G N, Fagnani F, Zampieri S, Evans R J. Feedback control under data rate constraints: an overview. Proceedings of the IEEE, 2007, 95(1): 108-137
    [18] Delchamps D F. Stabilizing a linear system with quantized state feedback. IEEE Transactions on Automatic Control, 1990, 35(8): 916-924
    [19] Petersen I R, Savkin A V. Multi-rate stabilization of multivariable discrete-time linear systems via a limited capacity communication channel. In: Proceedings of the 40th IEEE Conference on Decision and Control. Orlando, FL: IEEE, 2001. 304-309
    [20] Brockett R W, Liberzon D. Quantized feedback stabilization of linear systems. IEEE Transactions on Automatic Control, 2000, 45(7): 1279-1289
    [21] Liberzon D. On stabilization of linear systems with limited information. IEEE Transactions on Automatic Control, 2003, 48(2): 304-307
    [22] Ling Q, Lemmon M D. Stability of quantized control systems under dynamic bit assignment. IEEE Transactions on Automatic Control, 2005, 50(5): 734-740
    [23] Savkin A V. Analysis and synthesis of networked control systems: topological entropy, observability, robustness and optimal control. Automatica, 2006, 42(1): 51-62
    [24] Nair G N, Huang M, Evans R J. Optimal infinite horizon control under a low data rate. In: Proceedings of the 14th IFAC Symposium on System Identification. Newcastle, Australia: IFAC, 2006. 1115-1120
    [25] Liberzon D, Nesic D. Input-to-state stabilization of linear systems with quantized state measurements. IEEE Transactions on Automatic Control, 2007, 52(5): 767-781
    [26] Fu M Y, Xie L H. Finite-level quantized feedback control for linear systems. IEEE Transactions on Automatic Control, 2009, 54(5): 1165-1170
    [27] Sharon Y, Liberzon D. Input to state stabilizing controller for systems with coarse quantization. IEEE Transactions on Automatic Control, 2012, 57(4): 830-844
    [28] Sontag E D. Smooth stabilization implies coprime factorization. IEEE Transactions on Automatic Control, 1989, 34(4): 435-443
    [29] Sontag E D. Input to state stability: basic concepts and results. Nonlinear and Optimal Control Theory. Berlin: Springer-Verlag, 2007. 163-220
    [30] Sontag E D. Comments on integral variants of ISS. Systems and Control Letters, 1998, 34(1-2): 93-100
    [31] Sontag E D, Wang Y. New characterizations of input-to-state stability. IEEE Transactions on Automatic Control, 1996, 41(9): 1283-1294
    [32] Martins N C, Dahleh M A. Fundamental limitations of performance in the presence of finite capacity feedback. In: Proceedings of the 2005 American Control Conference. Portland, OR, USA: IEEE, 2005. 79-86
    [33] Nair G N, Evans R J. Stabilizability of stochastic linear systems with finite feedback data rates. SIAM Journal on Control and Optimization, 2004, 43(2): 413-436
    [34] Matveev A S, Savkin A V. The problem of LQG optimal control via a limited capacity communication channel. Systems and Control Letters, 2004, 53(1): 51-64
    [35] Tatikonda S, Sahai A, Mitter S K. Stochastic linear control over a communication channel. IEEE Transactions on Automatic Control, 2004, 49(9): 1549-1561
    [36] Fu M Y. Lack of separation principle for quantized linear quadratic gaussian control. IEEE Transactions on Automatic Control, 2012, 57(9): 2385-2390
    [37] Bicchi A, Marigo A, Piccoli B. On the reachability of quantized control systems. IEEE Transactions on Automatic Control, 2002, 47(4): 546-563
    [38] De Persis C, Isidori A. Stabilizability by state feedback implies stabilizability by encoded state feedback. Systems and Control Letters, 2004, 53(3-4): 249-258
    [39] De Persis C. n-bit stabilization of n-dimensional nonlinear systems in feedforward form. IEEE Transactions on Automatic Control, 2005, 50(3): 299-311
    [40] Liberzon D, Hespanha J P. Stabilization of nonlinear systems with limited information feedback. IEEE Transactions on Automatic Control, 2005, 50(6): 910-915
    [41] Liu J L, Elia N. Quantized feedback stabilization of non-linear affine systems. International Journal of Control, 2004, 77(3): 239-249
    [42] Nair G N, Evans R J, Mareels I M Y, Moran W. Topological feedback entropy and nonlinear stabilization. IEEE Transactions on Automatic Control, 2004, 49(9): 1585-1597
    [43] Ceragioli F, De Persis C. Discontinuous stabilization of nonlinear systems: quantized and switching controls. Systems and Control Letters, 2007, 56(7-8): 461-473
    [44] Liberzon D. Hybrid feedback stabilization of systems with quantized signals. Automatica, 2003, 39(9): 1543-1554
    [45] Liberzon D. Observer-based quantized output feedback control of nonlinear systems. In: Proceedings of the 17th IFAC World Congress. Seoul, Korea: IFAC, 2008. 8039-8043
    [46] Shim H, Kim J S, Liberzon D. Quasi-ISS reduced-order observers and quantized output feedback. In: Proceedings of the 48th IEEE Conference on Decision and Control. Shanghai, China: IEEE, 2009. 6680-6685
    [47] Sontag E D. Clocks and insensitivity to small measurement errors. ESAIM: Control, Optimisation and Calculus of Variations, 1999, 4(1): 537-557
    [48] Freeman R A. Global internal stabilizability does not imply global external stabilizability for small sensor disturbances. IEEE Transactions on Automatic Control, 1995, 40(12): 2119-2122
    [49] Jiang Z P, Mareels I M Y, Hill D J. Robust control of uncertain nonlinear systems via measurement feedback. IEEE Transactions on Automatic Control, 1999, 44(4): 807-812
    [50] Jiang Z P, Mareels I M Y. A small-gain control method for nonlinear cascaded systems with dynamic uncertainties. IEEE Transactions on Automatic Control, 1997, 42(3): 292-308
    [51] Freeman R A, Kokotovic P V. Robust Nonlinear Control Design: State-Space and Lyapunov Techniques. Boston: Birkhäuser, 1996
    [52] Sontag E D. Further facts about input to state stabilization. IEEE Transactions on Automatic Control, 1990, 35(4): 473-476
    [53] Ledyaev Y S, Sontag E D. A Lyapunov characterization of robust stabilization. Nonlinear Analysis: Theory, Methods and Applications, 1999, 37(7): 813-840
    [54] Freeman R A, Kokotovic P V. Global robustness of nonlinear systems to state measurement disturbances. In: Proceedings of the 32nd IEEE Conference on Decision and Control. San Antonio, TX: IEEE, 1993. 1507-1512
    [55] Krstic M, Kanellakopoulos I, Kokotovic P V. Nonlinear and Adaptive Control Design. New York: John Wiley and Sons, 1995
    [56] Jiang Z P, Teel A R, Praly L. Small-gain theorem for ISS systems and applications. Mathematics of Control, Signals and Systems, 1994, 7(2): 95-120
    [57] Jiang Z P, Mareels I M Y, Wang Y. A Lyapunov formulation of the nonlinear small-gain theorem for interconnected ISS systems. Automatica, 1996, 32(8): 1211-1215
    [58] Jiang Z P. A combined backstepping and small-gain approach to adaptive output feedback control. Automatica, 1999, 35(6): 1131-1139
    [59] Jiang Z P. Global output feedback control with disturbance attenuation for minimum-phase nonlinear systems. Systems and Control Letters, 2000, 39(3): 155-164
    [60] Jiang Z P, Arcak M. Robust global stabilization with ignored input dynamics: an input-to-state stability (ISS) small-gain approach. IEEE Transactions on Automatic Control, 2001, 46(9): 1411-1415
    [61] Karafyllis I, Jiang Z P. Necessary and sufficient Lyapunov-like conditions for robust nonlinear stabilization. ESAIM: Control, Optimisation and Calculus of Variations, 2009, 16(4): 887-928
    [62] Jiang Z P, Wang Y. A generalization of the nonlinear small-gain theorem for large-scale complex systems. In: Proceedings of the 7th World Congress on Intelligent Control and Automation. Chongqing, China: IEEE, 2008. 1188-1193
    [63] Liu T F, Hill D J, Jiang Z P. Lyapunov formulation of ISS cyclic-small-gain in continuous-time dynamical networks. Automatica, 2011, 47(9): 2088-2093
    [64] Liu T F, Jiang Z P, Hill D J. Quantized output-feedback control of nonlinear systems: a cyclic-small-gain approach. In: Proceedings of the 30th Chinese Control Conference. Yantai, China: IEEE, 2011. 487-492
    [65] Liu T F, Jiang Z P, Hill D J. A sector bound approach to feedback control of nonlinear systems with state quantization. Automatica, 2012, 48(1): 145-152
    [66] Liu T F, Jiang Z P, Hill D J. Quantized stabilization of strict-feedback nonlinear systems based on ISS cyclic-small-gain theorem. Mathematics of Control, Signals, and Systems, 2012, 24(1-2): 75-110
    [67] Liu T F, Jiang Z P, Hill D J. Small-gain based output-feedback controller design for a class of nonlinear systems with actuator dynamic quantization. IEEE Transactions on Automatic Control, 2012, 57(5): 1326-1332
    [68] Filippov A F. Differential Equations with Discontinuous Righthand Sides. Boston: Kluwer Academic Publishers, 1988
    [69] Heemels W P M H, Weiland S. Input-to-state stability and interconnections of discontinuous dynamical systems. Automatica, 2008, 44(12): 3079-3086
    [70] De Persis C. Robust stabilization of nonlinear systems by quantized and ternary control. Systems and Control Letters, 2009, 58(8): 602-608
    [71] Hahn W. Stability of Motion. Berlin: Springer-Verlag, 1967
    [72] Khalil H K. Nonlinear Systems (3rd edition). New Jersey: Prentice-Hall, 2002
    [73] Sontag E D, Wang Y. On characterizations of the input-to-state stability property. Systems and Control Letters, 1995, 24(5): 351-359
    [74] Praly L, Wang Y. Stabilization in spite of matched unmodeled dynamics and an equivalent definition of input-to-state stability. Mathematics of Control, Signals and Systems, 1996, 9(1): 1-33
    [75] Jiang Z P, Repperger D W, Hill D J. Decentralized nonlinear output-feedback stabilization with disturbance attenuation. IEEE Transactions on Automatic Control, 2001, 46(10): 1623-1629
    [76] Karafyllis I, Jiang Z P. Stability and Stabilization of Nonlinear Systems. London: Springer, 2011
    [77] Karafyllis I, Jiang Z P. A small-gain theorem for a wide class of feedback systems with control applications. SIAM Journal on Control and Optimization, 2007, 46(4): 1483-1517
    [78] Liberzon D. Switching in Systems and Control. Boston: Birkhäuser, 2003
    [79] Hespanha J P, Liberzon D, Angeli D, Sontag E D. Nonlinear norm-observability notions and stability of switched systems. IEEE Transactions on Automatic Control, 2005, 50(2): 154-168
    [80] Isidori A. Nonlinear Control Systems (3rd edition). London: Springer, 1995
    [81] Sontag E D. Mathematical Control Theory: Deterministic Finite Dimensional Systems (2nd edition). New York: Springer, 1998
    [82] Coron J M. Control and Nonlinearity. Providence: American Mathematical Society, 2009
    [83] Huang J. Nonlinear Output Regulation: Theory and Applications. Philadelphia: SIAM, 2004
    [84] Byrnes C I, Delli P F, Isidori A. Output Regulation of Uncertain Nonlinear Systems. Boston: Birkhäuser, 1997
    [85] Siljak D D. Decentralized Control of Complex Systems. Boston: Academic Press, 1991
    [86] Jiang Z P. Decentralized disturbance attenuating output-feedback trackers for large-scale nonlinear systems. Automatica, 2002, 38(8): 1407-1415
    [87] Liu T F, Jiang Z P, Hill D J. Decentralized output-feedback control of large-scale nonlinear systems with sensor noise. Automatica, 2012, 48(10): 2560-2568
    [88] Karafyllis I, Jiang Z P. A vector small-gain theorem for general non-linear control systems. IMA Journal of Mathematical Control and Information, 2011, 28(3): 309-344
    [89] Liu T F, Jiang Z P, Hill D J. Lyapunov formulation of the ISS cyclic-small-gain theorem for hybrid dynamical networks. Nonlinear Analysis: Hybrid Systems, 2012, 6(4): 988-1001
    [90] Hayakawa T, Ishii H, Tsumura K. Adaptive quantized control for linear uncertain discrete-time systems. Automatica, 2009, 45(3): 692-700
    [91] Hayakawa T, Ishii H, Tsumura K. Adaptive quantized control for nonlinear uncertain systems. Systems and Control Letters, 2009, 58(9): 625-632
    [92] Teel A R. Connections between Razumikhin-type theorems and the ISS nonlinear small gain theorem. IEEE Transactions on Automatic Control, 1998, 43(7): 960-964
  • 加载中
计量
  • 文章访问数:  4078
  • HTML全文浏览量:  239
  • PDF下载量:  2903
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-07-01
  • 修回日期:  2013-08-29
  • 刊出日期:  2013-11-20

目录

    /

    返回文章
    返回