2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于多准则排序融合的证据组合方法

杨艺 韩德强 韩崇昭

杨艺, 韩德强, 韩崇昭. 基于多准则排序融合的证据组合方法. 自动化学报, 2012, 38(5): 823-831. doi: 10.3724/SP.J.1004.2012.00823
引用本文: 杨艺, 韩德强, 韩崇昭. 基于多准则排序融合的证据组合方法. 自动化学报, 2012, 38(5): 823-831. doi: 10.3724/SP.J.1004.2012.00823
YANG Yi, HAN De-Qiang, HAN Chong-Zhao. Evidence Combination Based on Multi-criteria Rank-level Fusion. ACTA AUTOMATICA SINICA, 2012, 38(5): 823-831. doi: 10.3724/SP.J.1004.2012.00823
Citation: YANG Yi, HAN De-Qiang, HAN Chong-Zhao. Evidence Combination Based on Multi-criteria Rank-level Fusion. ACTA AUTOMATICA SINICA, 2012, 38(5): 823-831. doi: 10.3724/SP.J.1004.2012.00823

基于多准则排序融合的证据组合方法

doi: 10.3724/SP.J.1004.2012.00823
详细信息
    通讯作者:

    韩德强, 西安交通大学电子与信息工程学院副教授. 2008 年获西安交通大学控制科学与工程专业博士学位. 主要研究方向为证据理论, 信息融合, 目标识别.

Evidence Combination Based on Multi-criteria Rank-level Fusion

  • 摘要: Dempster-Shafer证据理论在信息融合领域有着广泛而重要的应用, 但传统Dempster证据组合规则往往会引发一系列反直观结果问题, 如冲突悖论、信任偏移悖论以及证据吸收悖论等. 针对这一问题, 提出了一种基于多准则排序融合的证据组合新方法. 该方法综合利用了证据精度、证据可信度以及证据自冲突程度等指标评价待组合证据体,并以选择性融合的方式获取最终的组合结果. 仿真结果和相关分析表明,所提方法是合理有效的.
  • [1] Dempster A P. Upper and lower probabilities induced by a multivalued mapping. Annals of Mathematical Statistics, 1967, 38(2): 325-339[2] Shafer G. A Mathematical Theory of Evidence. Princeton: Princeton University Press, 1976[3] Zhu Qing, Xu Sheng-Hua, Han Li-Tao. A new shadow extraction method from color aerial images based on Dempster-Shafer evidence theory. Acta Automatica Sinica, 2007, 33(6): 588-595 (朱庆, 徐胜华, 韩李涛. 基于D-S证据理论的彩色航空影像阴影提取方法. 自动化学报, 2007, 33(6): 588-595)[4] Li Peng, Liu Si-Feng. Interval-valued intuitionistic fuzzy numbers decision-making method based on grey incidence analysis and D-S theory of evidence. Acta Automatica Sinica, 2011, 37(8): 993-998(李鹏, 刘思峰. 基于灰色关联分析和D-S证据理论的区间直觉模糊决策方法. 自动化学报, 2011, 37(8): 993-998)[5] Smarandache F, Dezert J. Applications and Advances of DSmT for Information Fusion (Vol 3). Rehoboth: American Research Press, 2009. 4-32[6] Lefevre E, Colot O, Vannoorenberghe P. Belief function combination and conflict management. Information Fusion, 2002, 3(2): 149-162[7] Sun Quan, Ye Xiu-Qing, Gu Wei-Kang. A new combination rules of evidence theory. Acta Electronica Sinica, 2000, 28(8): 117-119 (孙全, 叶秀清, 顾伟康. 一种新的基于证据理论的合成公式. 电子学报, 2000, 28(8): 117-119)[8] Smets P. Data fusion in the transferable belief model. In: Proceedings of the 3rd International Conference on Information Fusion. Paris, France: IEEE, 2000. 21-33[9] Zhang Shan-Ying, Pan Quan, Zhang Hong-Cai. Conflict problem of Dempster-Shafer evidence theory. Acta Aeronautica et Astronautica Sinica, 2001, 22(4): 369-372 (张山鹰, 潘泉, 张洪才. 证据推理冲突问题研究. 航空学报, 2001, 22(4): 369-372)[10] Han D Q, Han C Z, Yang Y. A modified evidence combination approach based on ambiguity measure. In: Proceedings of the 11th International Conference on Information Fusion. Cologne, Germany: IEEE, 2008. 1346-1351[11] Florea M C, Jousselme A L, Bossé , Grenier D. Robust combination rules for evidence theory. Information Fusion, 2009, 10(2): 183-197[12] Murphy C K. Combining belief functions when evidence conflicts. Decision Support Systems, 2000, 29(1): 1-9[13] Deng Y, Shi W K, Zhu Z F, Liu Q. Combining belief functions based on distance of evidence. Decision Support Systems, 2004, 38(3): 489-493[14] Chen Wei-Jun, Jing Zhan-Rong, Yuan Fang-Fei, Zhu An-Fu. Shortcoming of D-S evidence theory and its mathematic modification. Journal of North University of China (Natural Science Edition), 2010, 32(2): 161-168(陈炜军, 景占荣, 袁芳菲, 朱安福. D-S证据理论的不足及其数学修正. 中北大学学报 (自然科学版), 2010, 32(2): 161-168)[15] Yang Yi, Han De-Qiang, Han Chong-Zhao. Study on feature selection based on rank-level fusion. Control and Decision, 2011, 26(3): 397-401 (杨艺, 韩德强, 韩崇昭. 基于排序融合的特征选择. 控制与决策. 2011, 26(3): 397-401)[16] Han Chong-Zhao, Zhu Hong-Yan, Duan Zhan-Sheng. Multi-Source Information Fusion (Edition 2). Beijing: Tsinghua University Press, 2010. 86-87 (韩崇昭, 朱洪艳, 段战胜. 多源信息融合(第二版). 北京: 清华大学出版社, 2010. 86-87)[17] Zadeh L A. Review of a mathematical theory of evidence. AI Magazine, 1984, 5(3): 81-83[18] Yang Feng-Bao, Wang Xiao-Xia. Combination Method of Conflictive Evidences in D-S Evidence Theory. Beijing: National Defence Industry Press, 2010. 70-71 (杨风暴, 王肖霞. D-S 证据理论的冲突证据合成方法. 北京: 国防工业出版社, 2010. 70-71)[19] Dezert J, Tchamova A. On the behavior of Dempster's rule of combination [Online], available: hal.archives-ouvertes.fr/docs/00/57/79/83/PDF/OnBehaviorOfDSRule.pdf, March 18, 2011[20] Dubois D, Prade H. Representation and combination of uncertainty with belief functions and possibility measures. Computational Intelligence, 1988, 4(3): 244-264[21] Yager R R. On the Dempster-Shafer framework and new combination rules. Information Sciences, 1987, 41(2): 93-137[22] Jousselme A L, Grenier D, Bossé . A new distance between two bodies of evidence. Information Fusion, 2001, 2(2): 91-101[23] Haenni R. Are alternatives to Dempster's rule of combination real alternative? Comments on ''About the belief function combination and the conflict management problem''. Information Fusion, 2002, 3(4): 237-239[24] Powell G, Roberts M. GRP1. A recursive fusion operator for the transferable belief model. In: Proceedings of the 14th International Conference on Information Fusion. Chicago, USA: IEEE, 2011. 168-175[25] Smarandache F, Martin A, Osswald C. Contradiction measures and specificity degrees of basic belief assignments. In: Proceedings of the 14th International Conference on Information Fusion. Chicago, USA: IEEE, 2011. 475-482[26] Liu W R. Analyzing the degree of conflict among belief functions. Artificial Intelligence, 2006, 170(11): 909-924[27] Li Yong-Ming, Zhang Su-Juan, Zeng Xiao-Ping, Qin Jian, Han Liang. Research of poll mode and multi-criteria feature selection algorithm based on chain-like agent genetic algorithm. Journal of System Simulation, 2009, 21(7): 2010-2013, 2017 (李勇明, 张素娟, 曾孝平, 覃剑, 韩亮. 轮询式多准则特征选择算法的研究. 系统仿真学报, 2009, 21(7): 2010-2013, 2017)[28] Liu Ming, Yuan Bao-Zong, Miao Zhen-Jiang. A double-objective rank level classifier fusion method. Acta Automatica Sinica, 2007, 33(12): 1276-1282 (刘明, 袁保宗, 苗振江. 一种双目标排序层分类器融合方法. 自动化 学报, 2007, 33(12): 1276-1282)[29] Renda M E, Straccia U. Web metasearch: rank vs. score based rank aggregation methods. In: Proceedings of the ACM Symposium on Applied Computing. Melbourne, Florida: ACM Press, 2003. 841-846[30] Kumar A, Shekhar S. Palmprint recognition using rank level fusion. In: Proceedings of the 17th IEEE International Conference on Imager Processing. Hong Kong, China: IEEE, 2010. 3121-3124[31] Jousselme A-L, Maupin P. On some properties of distances in evidence theory. In: Proceedings of Workshop on Theory of Belief Functions. Brest, France, 2010. 1-6
  • 加载中
计量
  • 文章访问数:  2238
  • HTML全文浏览量:  69
  • PDF下载量:  867
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-10-14
  • 修回日期:  2012-01-05
  • 刊出日期:  2012-05-20

目录

    /

    返回文章
    返回