[1]
|
Li W K, Guo Q H, Elkan C. A positive and unlabeled learning algorithm for one-class classification of remote-sensing data. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(2): 717-725[2] Mahadevan S, Shah S L. Fault detection and diagnosis in process data using one-class support vector machines. Journal of Process Control, 2009, 19(10): 1627-1639[3] Mena L, Gonzalez J A. Symbolic one-class learning from imbalanced datasets: application in medical diagnosis. International Journal on Artificial Intelligence Tools, 2009, 18(2): 273-309[4] Xu J, Chen Q C, Wang X L, Wei Z Y. One-class classification models for financial industry information recommendation. In: Proceedings of the International Conference on Machine Learning and Cybernetics. Qingdao, China: IEEE, 2010. 3329-3334[5] Gosztolya G, Banhalmi A, Toth L. Using one-class classification techniques in the anti-phoneme problem. In: Proceedings of the 4th Iberian Conference on Pattern Recognition and Image Analysis. Povoa de Varzim, Portugal: Springer, 2009. 433-440[6] Oliveira H, Caeiro J J, Correia P L. Improved road crack detection based on one-class Parzen density estimation and entropy reduction. In: Proceedings of the 17th IEEE International Conference on Image Processing. Hong Kong, China: IEEE, 2010. 2201-2204[7] Choi Y S. Least squares one-class support vector machine. Pattern Recognition Letters, 2009, 30(13): 1236-1240[8] Tian Jiang, Gu Hong. Outlier one class support vector machines. Journal of Electronics and Information Technology, 2010, 32(6): 1284-1288(田江, 顾宏. 孤立点一类支持向量机算法研究. 电子与信息学报, 2010, 32(6): 1284-1288)[9] Gu H, Zhao G Z, Qiu J. One-class support vector machine with relative comparisons. Tsinghua Science and Technology, 2010, 15(2): 190-197[10] Tax D, Duin R. Support vector data description. Machine Learning, 2004, 54(1): 45-56[11] Sakla W, Chan A, Ji J, Sakla A. An SVDD-based algorithm for target detection in hyperspectral imagery. IEEE Geoscience and Remote Sensing Letters, 2011, 8(2): 384-388[12] Huang G X, Chen H F, Yin F. Improved support vector data description. In: Proceedings of the International Conference on Machine Learning and Cybernetics. Qingdao, China: IEEE, 2010. 1459-1463[13] Zhang X L, Ren F. Improving svm learning accuracy with adaboost. In: Proceedings of the 4th International Conference on Natural Computation. Jinan, China: IEEE, 2010. 221-225[14] Juszczak P, Tax D, Pekalska E, Duin R. Minimum spanning tree based one-class classifier. Neurocomputing, 2009, 72(7-9): 1859-1869[15] Hu Zheng-Ping, Xu Cheng-Qian, Jia Qian-Wen. A classification algorithm with reject option based on adaptive minimum spanning tree covering model in high-dimensional space. Journal of Electronics and Information Technology, 2010, 32(12): 2896-2900(胡正平, 许成谦, 贾千文. 基于高维空间最小生成树自适应覆盖模型的可拒绝分类算法. 电子与信息学报, 2010, 32(12): 2896-2900)[16] Wang Shou-Jue. Bionic (topological) pattern recognition — a new model of pattern recognition theory and its applications. Acta Electronica Sinica, 2002, 30(10): 1417-1420(王守觉. 仿生模式识别(拓扑模式识别) — 一种模式识别新模型的理论与应用. 电子学报, 2002, 30(10): 1417-1420)
|