2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

保证闭环系统鲁棒稳定性的干扰观测器系统性设计方法

尹正男 苏剑波 高秀行

尹正男, 苏剑波, 高秀行. 保证闭环系统鲁棒稳定性的干扰观测器系统性设计方法. 自动化学报, 2012, 38(1): 12-22. doi: 10.3724/SP.J.1004.2012.00012
引用本文: 尹正男, 苏剑波, 高秀行. 保证闭环系统鲁棒稳定性的干扰观测器系统性设计方法. 自动化学报, 2012, 38(1): 12-22. doi: 10.3724/SP.J.1004.2012.00012
YIN Zheng-Nan, SU Jian-Bo, GAO Xiu-Xing. Systematic Design Method of Disturbance Observer Guaranteeing Closed-loop System's Robust Stability. ACTA AUTOMATICA SINICA, 2012, 38(1): 12-22. doi: 10.3724/SP.J.1004.2012.00012
Citation: YIN Zheng-Nan, SU Jian-Bo, GAO Xiu-Xing. Systematic Design Method of Disturbance Observer Guaranteeing Closed-loop System's Robust Stability. ACTA AUTOMATICA SINICA, 2012, 38(1): 12-22. doi: 10.3724/SP.J.1004.2012.00012

保证闭环系统鲁棒稳定性的干扰观测器系统性设计方法

doi: 10.3724/SP.J.1004.2012.00012
详细信息
    通讯作者:

    尹正男 上海交通大学自动化系博士研究生. 于1998年在朝鲜金日成综合大学自动化系获硕士学位. 主要研究方向为机器人运动控制和鲁棒控制. 本文通信作者. E-mail: yjn2914@yahoo.cn

Systematic Design Method of Disturbance Observer Guaranteeing Closed-loop System's Robust Stability

  • 摘要: 研究带有干扰观测器(Disturbance observer,DOB)的反馈控制系统对模型不确定性鲁棒稳定的充分条件,在此基础上,选取满足此充分条件的加权函数,使得标准H∞干扰观测器设计方法保证对受控对象参数变化的鲁棒稳定性.提出了在H∞干扰观测器设计中兼顾鲁棒性设计指标和结构约束的频率加权函数的选取方法.利用加权函数选取的自由度,在干扰观测器低通滤波器设计中,实现Q—滤波器在截止频率上的高峰幅度与干扰抑制性能之间的最佳折中,使得干扰观测器在满足其幅度指标的条件下,具有最优干扰抑制性能.实验结果表明该方法保证了闭环反馈系统的鲁棒稳定性,同时,具有实现其他设计指标的自由度.
  • [1] Ohishi K,Murakami T. Advanced motion control in robotics. In:Proceedings of the 15th Annual Conference of IEEE Industrial Electronics Society. Philadelphia,USA:IEEE,1989. 356-359[2] Natori K,Tsuji T,Ohnishi K,Hace A,Jezernik K. Time-delay compensation by communication disturbance observer for bilateral teleoperation under time-varying delay. IEEE Transactions on Industrial Electronics,2010,57(3):1050-1062[3] Ohishi K. Realization of fine motion control based disturbance observer. In:Proceedings of the 10th IEEE International Workshop on Advanced Motion Control. Trento,Italy:IEEE,2008. 1-8[4] Nakata T,Tomizuka M. Robust engine torque control by iterative learning control. In:Proceedings of the American Control Conference. St. Louis,USA:IEEE,2009. 2064-2069[5] Tanaka H,Ohnishi K,Nishi H,Kawai T,Morikawa Y,Ozawa S,Furukawa T. Haptic endoscopic surgery robot utilizing FPGA. In:Proceedings of the 10th IEEE International Workshop on Advanced Motion Control. Trento,Italy:IEEE,2008. 601-606[6] Rahmam A A,Ohnishi K. Robust time delay control system based on communication disturbance observer with inner loop input. In:Proceedings of the 36th Annual Conference on IEEE Industrial Electronics Society. Glendale,USA:IEEE,2010. 1621-1626[7] Schrijver E,Dijk J V. Disturbance observers for rigid mechanical systems:equivalence,stability,and design. Journal of Dynamic Systems,Measurement,and Control,2002,124(4):539-548[8] Umeno T,Hori Y. Robust speed control of DC servomotors using modern two degrees-of-freedom controller design. IEEE Transactions on Industrial Electronics,1991,38(5):363-368[9] Kempf C J,Kobayashi S. Disturbance observer and feedforward design for a high-speed direct-drive positioning table. IEEE Transactions on Control Systems Technology,1999,7(5):513-526[10] Tan K K,Lee T H,Dou H F,Chin S J,Zhao S. Precision motion control with disturbance observer for pulsewidth-modulated-driven permanent-magnet linear motors. IEEE Transactions on Magnetics,2003,39(3):1813-1818[11] Noh I,Won S. Robust adaptive control using disturbance observer for system with actuator of first order time lag. In:Proceedings of the IEEE International Conference on Control and Automation. Christchurch,New Zealand:IEEE,2009. 246-251[12] Wang C C,Tomizuka M. Design of robustly stable disturbance observers based on closed loop consideration using H∞ optimization and its applications to motion control systems. In:Proceedings of the American Control Conference. Boston,USA:IEEE,2004. 3764-3769[13] Thum C K,Du C,Lewis F L,Chen B M,Ong E H. H_α disturbance observer design for high precision track following in hard disk drives. IET Control Theory and Applications,2009,3(12):1591-1598[14] Zhang G Z,Chen J,Li Z P. Analysis and design of H∞ robust disturbance observer based on LMI. In:Proceedings of the 7th World Congress on Intelligent Control and Automation. Chongqing,China:IEEE,2008. 4697-4701[15] Yin Zheng-Nan,Su Jian-Bo,Liu Yan-Tao. Design of disturbance observer with robust performance based on H∞ norm optimization. Acta Automatica Sinica,2011,37(3):331-341(尹正男,苏剑波,刘艳涛. 基于H∞ 范数优化的干扰观测器的鲁棒设计. 自动化学报,2011,37(3):331-341)[16] Fan X,Tomizuka M. Robust disturbance observer design for a power-assist electric bicycle. In:Proceedings of the American Control Conference. Baltimore,USA:IEEE,2010. 1166-1171[17] Francis B A,Wonham W M. The internal model principle of control theory. Automatica,1976,12(5):457-465[18] Doyle J C,Glover K,Khargonekar P P,Francis B A. State-space solutions to standard H2 and H∞ control problems. IEEE Transactions on Automatic Control,1989,34(8):831-847
  • 加载中
计量
  • 文章访问数:  2926
  • HTML全文浏览量:  50
  • PDF下载量:  1046
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-07-04
  • 修回日期:  2011-09-20
  • 刊出日期:  2012-01-20

目录

    /

    返回文章
    返回